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THE TURBULENT BOUNDARY LAYER 
IN SUPERSONIC GAS FLOWS 

Yu. V. Lapin 

"Nauka" Press 
Main Publishing House for Physico-Mathematical Literature 
Moscow, 1970. 

* * * * * *  

flTurbulentnyyPogranichnyy Sloy v Sverkhzvukovykh Potokakh Gaza", Yu. V .  Lapin, 
Glavnaya Redaktsiya Fiziko-Matematicheskoy Literatury Izdatel' stva "Nauka*$, 
Moscow, 1970, 344 pages. 

This book presents the theoretical and experimental results of studies of 
pressure drop, heat and mass transfer in turbulent boundary layers at supersonic 
gas velocities. In addition, the book contains a presentation of the fundamentals of 
the molecular theory of gas flows, derivations of the equations of turbulent motion 
and of the boundary layer equations, in particular for the case of multicomponent
reacting gases. Information is given on the kinetics of chemical reactions, includ
ing the kinetics of dissociation reactions in air. Problems of heat and mass trans
fer on permeable surfaces are  considered. 
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FOREWORD 

Problems of turbulence in general and of turbulent boundary layers in 
particular continue to be very real at present, in spite of the ever-increasing
importance of their applications. 

In connection with the rapid developments in the fields of aviation, space 
flight, construction of equipment for energy conversion and other areas of tech
nology of particular interest to investigators and engineers, problems have 
frequently arisen involving the motion of gases at supersonic velocities in 
boundary layers which may be homogeneous or nonhomogeneous as regards the 
gas composition. In many cases, motion at supersonic velocities leads to very 
large increases in the temperature of the gas, which then begins to take part in 
thermochemical processes leading to the breakdown of the gas molecules into 
atoms, and of the atoms into ions and electrons, and the formation of oxides 
and other compounds. When flows at supersonic velocities are  being considered 
it is necessary in some cases to allow for processes occurring at the surfaces 
of bounding bodies, such as melting, ablation (evaporation), chemical reactions, 
etc. Many of these phenomena have been and remain the subjects of detailed in
vestigations of a theoretical and experimental nature. In the present book an 
attempt is made to present a systematic discussion of some of the results of 
these investigations; as usual, on the theoretical level preference is given to 
results obtained on the basis of the semi-empirical theory of turbulence. 

The semi-empirical theory of turbulence, as a branch of the statistical 
theory of turbulence, continues to be very important at present, and in many 
cases provides the only instrument available for solving the great majority of 
practical problems. Originally set up on the basis of investigations of the flow 
of incompressible fluids in pipes, channels, boundary layers, jets and wakes, 
and used mainly for predicting the properties of incompressible fluid flows, the 
semi-empirical theory of turbulence also possesses wide possibilities for the 
study of much more complex flows such as the flow of compressible and heat-
conducting gases, the flow of multicomponent reacting gas mixtures, etc. This 
is shown conclusively by the results of numerous experimental and theoretical 
investigations carried out in recent years. 

The book does not pretend to give an exhaustive treatment of all the prob
lems which arise in investigations of the movement of gases in boundary layers
in supersonic flows. This is partly due to the fact that some of these problems 
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have received insufficient attention; this is particularly true of turbulent boundary 
layers on decomposing surfaces, the motion of ionized and radiating gases, etc. 
A part is also played by the personal interests of the author. In particular, in  the 
special chapters of the book (IIIto V) only those branches of the theory of turbu
lent boundary layer are included in  which the author has to some extent played a 
part in their development. 

Chapter I contains a discussion of the fundamentals of the molecular theory
of gas flows and a derivation of the dynamic equations of a multicomponent react
ing gas based on the fundamental equation of the kinetic theory of gases -
Boltzmann's equation. 

A derivation of the system of equations for the turbulent motion of a multi
component reacting gas is given in Chapter 11. The turbulent boundary layer 
equations are then obtained from this system of equations, The integral momen
tum and energy relationships, which play an important role in the semi-empirical 
theory of turbulence, are also introduced at this point. 

The theoretical and experimental results obtained during investigations of 
the characteristics of turbulent boundary layers on impermeable surfaces in 
supersonic gas streams which are  homogeneous in composition a re  discussed 
in Chapter III. Both semi-empirical and empirical methods are used for calcu
lating the boundary layer on a flat plate. The effects of compressibility and heat 
transfer on the laminar sublayer are analyzed. Experimental and theoretical 
data on the parameters characterizing heat transfer between the gas and a wall 
are  presented (including the parameters of Reynolds' analogy, which establishes 
a relationship between friction and heat transfer, and the recovery coefficient). 
A generalized semi-empirical method of calculation is given for the cases of flow 
around a cone at zero angle of attack, around spheres, and also for flow around 
nondetached bodies of arbitrary shapes. 

Chapter IV considers the motion of a dissociating gas in a turbulent bound
ary layer. Detailed information is provided on the kinetics of chemical reactions 
occurring in the gas and at the surface of the body, and in particular, data are 
provided on the kinetics of the dissociation reactions of oxygen and nitrogen. 
Various models of dissociating gases a re  described, including ideally dissociating 
and partly excited dissociating gases. A semi-empirical method is proposed for 
calculating friction and heat transfer on a flat plate for equilibrium, frozen and 
nonequilibrium states of the gas. 

Chapter V gives the results of experimental and theoretical investigations
of turbulent boundary layers in the case of mass transfer between the gas and the 
surface along which flow occurs. Methods are proposed for calculating the fric
tion and heat transfer on a porous plate during the blowing of gases of various 
types into the boundary layer. 

The author expresses his deep thanks to his teacher Lev Gerasimovich 
Loytsyanskiy for his assistance and support in writing the book, and in particular 
for his very valuable discussions of many of the problems considered in the book. 

The author expresses his appreciation to V. P. Mugalev who read through 
the manuscript of the book for a number of important comments. 
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CHAPTER I. 

THE. . . .. GAS .DYNAMIC EQUATIONS 

1. Introduction-
The development of the aviation and astronautical industries in the last 

decade has led to considerable interest in the problems of gas flow at supersonic -/8 

and hypersonic velocities. The study of these problems has shown that these flows 
cannot be described in terms of classical gas dynamics alone, in which flows with 
relatively small velocities are considered. In addition to gas dynamics, it be
comes necessary to consider many other fields of physics and chemistry. 

Any motion of a viscous gas is accompanied by dissipation of mechanical 
energy, which is converted into heat, but at small velocities the viscous dissipa
tion does not lead to the appearance of any noticeable temperature nonhomogeneities 
(temperature gradients). Under these conditions, the density and viscosity of the 
gas can be regarded as constant physical properties which do not depend on the 
nature of the motion. 

A s  the velocity of a gas flow is increased from small subsonic to moderate 
supersonic velocities appreciable temperature nonhomogeneities arise during 
passage of the gas through density discontinuities and in flow in boundary layers,
and these make it necessary to take into account the temperature dependences of 
density, viscosity and heat capacity, even when the moving gas can be regarded 
as homogeneous. 

The transition to hypersonic velocities causes such large increases in the 
gas temperature in density discontinuities and boundary layers that thermal pro
cesses begin to occur in the gas, which lead to splitting of the gas molecules into 
atoms (dissociation) and break-up of the atoms into ions and electrons (ionization), -
and to the formation of oxides and other chemical compounds. Furthermore, i n  
some cases it is necessary to make allowance for processes which occur on the 
surfaces of the bodies around which flow takes place, such as melting and subli
mation of the surface layers of the solid body, chemical reactions with it, etc. 
Under these conditions the flowing medium has to be regarded as a mixture of 
several components differing in their physico-chemical properties. The study of 
such complicated processes by the usual methods of classical (phenomenological) 
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gas dynamics is very difficult in many cases, particularly if the thermodynmiics 
of the process proceed in a nonequilibrium manner. 

It should be noted that the thermodynamic route to the study of various 
gas-dynamic phenomena is based on the postulate that there exist definite rela
tionships between the velocity gradient and the shear stress (Newton's law), be:-
tween the temperature gradient and the heat flux (Fourier's law), and between 
the concentration gradient and the diffusion flux (Fick's law), and that equations 
can be used which a re  derived from the fundamental laws of thermodynamics and 
classical mechanics. The transport coefficients, i. e., the proportionality coef
ficients in  Newton's, Fourier's and Fick's laws, reflect definite properties of 
the gas molecules, and which a re  therefore determined by the gas microstructure. 
These coefficients appear in the phenomenological theory as constants o r  state 
fimctions which a re  known beforehand; they cannot be calculated theoretically, 
but must be determined from experiments. It is entirely to be expected that the 
phenomenological theory, which is based on an approximate macro-model of the 
gas, will not be capable of describing many of the complex phenomena in the 
study of which it is necessary to take into account various types of micro-
processes (disturbances of the internal degrees of freedom of molecules, dis
sociation, ionization, etc. ). The method of the kinetic theory of gases provides 
a means for describing such processes. 

The kinetic theory of gases makes it possible to determine the transport -bo
coefficients as functions of the temperature of the gas mixture, the molecular 
weights of the constituents of the mixture, and various parameters describing 
the field of intermolecular forces, as well as to set up macroscopic equations 
of motion for the gas being studied. The kinetic theory of gases is valid only at 
quite small gas densities when the effects of collisions of more than two mole
cules can be neglected. If the mean free flight path of the molecules in the gas
is small compared with characteristic macroscopic dimensions of a body, the 
gas behaves as a continuum. In this case it is possible to obtain the gas dynamic 
transport equations and expressions for the transport coefficients from the 
basic equation of the kinetic theory of gases (Boltzmann's equation). Since it is 
intended to follow this path later, some of the elements of the kinetic theory of 
gases are  discussed here briefly. Some knowledge of the fundamentals of the 
kinetic theory of gases is necessary in order to understand the interrelationships 
between micro- and macro-procedures which occur in gases, and is also useful 
from a practical point of view in studying flows of multicomponent reacting gas 
mixtures. Only the parts of the kinetic theory of gases which are important in 
the subsequent derivations are given below. A much deeper and more detailed 
presentation of this theory is contained in the monographs by Hirschfelder, 
Curtiss and Bird [ l l  and Chapman and Cowling [ 2 ] .  

2 .  Elements of the molecular theory of gas flows 

The dynamic state of a system of particles is completely defined if the 
positions and velocities (momenta) of all the particles are  specified. From a 
known dynamic state of the system at the initial moment of time, the laws of 
classical mechanics make it possible to predict its state at any subsequent 
moment of time. 
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A t  any given moment of time each of the particles has some velocity, and -m 
so each of the particles can be given a definite position in the velocity space 
characterized by the vector v.. The position of the particles in physical space

1. 

is determined by the vector 7’. 

In order to make a complete description of the dynamic state of a system 
of particles, the concept of a distribution function is introduced in the kinetic 
theory of gases. If a mixture of gases (strictly speaking, of monatomic gases) is 
considered, for the case when the mixture is in a nonequilibrium state, the prop
erties of each component of the mixture can be expressed in terms of distribution 
function fi( l a i ,  vi, t), which is defined as  the number of particles of the ith sort 

which at the moment of time t are  in an elementary unit volume of physical space 
around the point and which possess velocities within the elementary unit vol
ume of velocity space close to the point vi. 

The space (x, y, z ,  vix’ viy’ v.
iz

) is a multiphase type, since the position 
coordinates and the velocity coordinates are independent variables. 

The total number of particles in an elementary unit volume of physical 
space at the moment of time t is obtained by integrating the distribution function 
over all possible values of the velocities vix, v.1Y and v.

1z
: 

The quantity ni has the significance of a number density of part-Aes of the ith 
sort. For convenience, the triple integral 

will subsequently be denoted by 

When the distribution function is known, it is possible to calculate the mean /l2
value of any quantity ?+hiconnected with the particles of the ith sort and which is 
a function of the velocity components only. The formula �or evaluating the mean 
value of ?,hi will obviously have the form 
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The bar  above qbi is the symbol for averaging. Thus, the mean velocity Ti of the 
particles of the ith component, which have a number density ni’ is defined as 

follows: 

The mass average velocity, which is a weighted mean quantity, since each 
particle makes a contribution to this velocity proportional to its mass mi’ is 
defined according to the formula 

where 	Z m a .  = p (T,t) is the density of the medium at some point. 
i 1 1  

The mass average velocity is usually termed the stream velocity or  flow 
velocity and has the property that the momentum of unit volume of the gas is the 
same as it would be if all the gas particles in this volume moved with this velocity. 

The thermal velocity of the particles of the ith sort is defined as the velocity 
of the particles relative to a system of coordinates moving with the mass-average 
velocity 2’ : 

The diffusion velocity of the ith component is defined as  the velocity of the 
particles of this component relative to a system of coordinates moving with the b 3  
mass average velocity of the gas. In other words, the diffusion velocity is the 
average of the thermal velocities : 

In the kinetic theory, the temperature is defined in terms of the kinetic 
energy of the thermal motions averaged over all the particles: 
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where n = 	 C ni, and k is Boltzmann's constant. 
i 

If all the expressions for the macroscopic quantities are given in terms of 
the distribution function, we find that 

In the case of gases in a nonequilibrium state, the fields of one or more of 
the quantities characterizing the macaoscopic properties of the system must be 
nonuniform. The nonuniformity of the fields, i. e., the existence of gradients of 
the macroscopic quantities (the mass average velocity v , the temperature T, the 
mass concentration c.

1 
= p . / p ,  etc.) is the cause of a molecular transfer of
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momentum miT' i' kinetic energy lh (mil?) and of mass mi in the gas. 

A s  a characteristic of the molecular transfer of one or other substance the / l4-
concept of a vector flux density of the quantity qi( 3 

(1.9) 


is introduced in the kinetic theory. The physical significance of the flux density 
vector is that i ts  component in any direction represents the flux density of the 
corresponding physical quantity through a surface normal to this direction. 

If $.
1 

= mi, equation (1.9) leads to the mass flux density vector 

*It should be noted that in evaluating the average of a quantity, integration 
with respect to TT i is equivalent to integration with respect to v i ,  since these 
velocities differ by a constant quantity, and the integration is carried out over all 
values of the velocity. 
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If 3oi = miVi, then 

represents a symmetrical tensor of rank 2, characterizing the partial pressure 
of the ith component in the gas (*I. The sum of the partial pressure tensor over 
all the components in the gas leads to the pressure tensor of the mixture 

(1.12) 

The diagonal components of the pressure tensor, Pxx’ Pyy’ Pzz are equal to the 
normal stresses, while the nondiagonal components represent shear or tangential 
stresses. For example, the quantity P

J7x 
is equal to the force acting on a unit 

cross-sectional area perpendicular to the y direction in the x direction. 

If $i = mi Vi/2, then 

is the flux vector characterizing the transport of kinetic energy by particles of 
the ith sort. The sum of these vectors over all the components of the gas mixture 
gives the heat flux density vector: 

(1.14)
i i 


The components s,gy, s, of the heat flux density vector represent the flux 
densities of kinetic energy in the x, y and z directions respectively. 

. . -. . . . . . .- - ... . . - .  ... . . .... . . . .... . 

* In equation (1.11)the tensor Pi is regarded as the result of the dyadic 

multiplication of two vectors Vivi ,  where in contrast to the scalar Vi Vi and 
vector V 

1
. x V.

1 
products of these vectors, there is no multiplication sign in the 

dyadic product. 
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It follows from equations (1.8) and (1.10) to (1.14) that if the distribution 
function f.

1 
is known, the problem of determining the flow field and the transport 

characteristics can be solved completely. 

The way in which the distribution function fi varies is described by Boltz
mann's integro-differential equation, which assumes the form 

(1.15) 


when no external force field is present. Here 

(1.16) 


is the collision integral, which takes into account the change in the number of 
particles of the group being considered as a result of collisions; g.. = I v i  - v I 

11 
is the absolute value of the relative velocity of the particles of the ith and jth 
sorts before impact; b is the minimum distance to which colliding particles can 
approach each other without the occurrence of an interaction (the sighting distance);
f; and f!

J 
a re  the distribution functions of the colliding particles of the ith and jth 

sorts after impact; fi and f .
J 

a re  the distribution functions of the colliding particles 
before impact. 

Equations analogous to equation (1.15) can be written for all the compo
nents of a gas mixture. In each of these equations the distribution functions for 
all the components of the mixture appear within the integral sign on the right 
hand side of the equation. These integrals depend implicitly on the type of inter
molecular interaction. The distribution functions f; and f! a r e  functions of the

J 
velocities v ! and v ! which can be derived on the basis of the laws of mechanics 

1 J 
for known values of vi, v 

j '  
b and the intermolecular interaction potential. 

The. --. . . - - - ..__ _  - equations expressed_ .  ~ . .of the flux density3.  	 __ gas-dynamic.--.transport ... ~ 
in .terms .~ 

vectors. 

The fundamental gas-dynamic transport equations (the equations for the 
conservation of mass, momentum and energy) can be obtained directly from the 
Boltzmann equation without determining the form of the distribution function. By
multiplying the Boltzmann equation (1.15) by qi and integrating the result over 
all values of the velocity vi, it  is found that 
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(1.17) 

The first two terms on the left side of this equation can be converted to the form 

a -(n.*.) )&. _.>-at 1 1 1 At ' 

By substituting these equations into the left side of equation (1.17) it is 
seen that 

(1.18) 

This equation is known as the generalized Enskog transport equation for the 
quantity due to particles of the ith sort. 

By summing equation (1.18) over all the components the transport equation 
for the mixture is obtained: 

(1.19) 

The use of equation (1.19) for an arbitrary quantity ?)iis made very difficult by 
the appearance of a very complex integral on the right-hand side of the equation, 
However, if $,

1 
is the mass mi, the momentum m.

1
V i' o r  the kinetic energy of a 

molecule m.V?/2 (in the case of multi-atomic molecules it is necessary to take 
1 1  


the internal energy into account in the kinetic energy term), it can be shown that 
the right-hand part of equation (1.19) is equal to zero, and the equation is greatly
simplified. Actually, it is assumed that the interacting system consists of two 
particles: one is a particle of sort i with mass mi, and the other is a particle of 

sort j and mass m.. Suppose that the velocities of the particles before collision 
J 

are V i  and V . respectively, while the corresponding velocities after collision a re
J 

denoted by V i  and V!. If the system of colliding particles as  a whole is not sub
3 

jected to the action of an external force, and if the collision is adiabatic, then 
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on the basis of the laws of conservation of mass, momentum and energy it is 
possible to write 

(1.20) 

In the absence of chemical reactions, mi = mi, mj = m!.
J 

The expressions for the conservation relationships, (1.20) , can be repre
sented in the following generalized form for a system of colliding particles: 

qi + Qj = +: + o’;, (1.21) 

where ?,bi represents any of the quantities mi’ m.
1

V 
1 
. and m.V?/2. It can be shown

1 1  
that any function of the velocity which satisfies the relationship (1.21) is a linear 
combination of these quantities. The quantities z,bi which satisfy equation (1.21) 

are usually termed summatory invariants. 

Now let us turn to a consideration of the integral appearing in the summation 
on the right-hand part of equation (1.19). This integral 

is equal to the integral 

written for the reverse collision. 

It canbe shownthatg.. =gij, b = b l  anddv j’ d v ; = d v ! . d v l -i ’  the integral
1J J 

(1.23) can therefore be written in the form 

Since the integrals (1.22) and (1.24) are  equal, each of them is equal to half the 
sum of both integrals, i. e. , 
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By summing these integrals with respect to i and j, and noting that i and j are 
interchangeable, it is found that 

(1.25) 

For summatory invariants the quantity +.+ +.- +; - +; is equal to zero, and so 
1 J 

the right-hand part of the generalized Enskog transport equation (1.19) becomes 
equal to zero if $.

1 
is equal to mi' m.

1
V .

1 
or m. V?/Z

1 1  

Thus, the transport of mass, momentum or energy in a gas mixture is 
described by the following equation: 

(1.26) 

Now let us pass on to the derivation of the transport equations for concrete 
molecular quantities. Assume that +.1 = mi' In this case, equation (1.18) takes 
the form 

The integral SI. .dvi is equal to the rate of increase of the number of particles of 
1J 

the ith sort due to collisions with particles of the jth sort per unit volume (this 
integral is equal to zero in the absence of chemical reactions). The quantity 

expresses the overall increase in the number of particles of the ith sort per unit 
volume due to collisions with all sorts of particles, including the ith sort (as a 
result of chemical reactions). By substituting v according to equation (1.6) in 

equation (1.27j, the continuity equation fbr the ith component of the gas is obtained: 
ani--1- -a 
at  a l p  +Zi(?,+Fi)]= x i .  (1.28) 

i o  



When a change is made in equation (1.28) from ni to the mass concentration /20-

(1.29) 


it is found that 

where wi = m.K. is the mass rate of formation of the ith component per unit
1 1  


volume. 

By summing equation (1.30) over all values of i, the continuity equation
for the gas mixture is obtained in the form 

since x p i V i  = 0 from the definition of the diffusion velocity, while w. = 0 
i i 1 

according to equations (1.21) and (1.25). The condition 

(1.32) 


expresses the law of conservation of mass of the gas mixture in the presence of 
chemical reactions. 

By using the continuity equation for the gas mixture (1.31), the continuity 
equation for the ith component can be rearranged into the form 

It should be noted that within the differentiation sign on the right side of equation 
(1.33) a quantity appears which was defined earlier (see equation (1.10)) as the 
mass fluxdensity vector. 

In order to obtain the equation for the transport of momentum, the quantity /21-q5.
1 

= m.
1

V.
1 

is substituted into eqyation (1.26), giving 
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(1.34) 

This equation can be simplified by using the relationships among the velocities 
(1.5) and (1.6) and the definition of the pressure tensor (1.12). During differ
entiation, however, it  must be remembered that r v i  and t a re  independent 
quantities. After some simple rearrangements, the equations of motion for a 
gas mixture can be reduced to the following form: 

The equation for the transport of energy is obtained by substituting the 
quantity $.

1 
= m.V?/2 in equation (1.26) :

1 1  

(1.36) 

By using the relationships among the velocities (1.5),  (1.6) and the definition of 
the pressure tensor (1.12), and by introducing the energy flux density vector q 
defined by equation (1.14)y the energy balance equation is obtained: 

Here 

is the internal energy of the gas per unit mass, which is equal to the energy of 
the translational motion of the molecules (the kinetic energy of the translational 
motion of the gas stream as  a whole does not appear in this energy). In the last 
term on the left-hand side of equation (1.37) the symbol P .2 expresses the a r  
operation of multiplying the tensor P by the vector 8/8 r . It will be recalled that /22-this operation, which can be represented in the general case as  T. A ,  is defined 
as a vector with the projections 
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Equation (1.37) can be simplified by using the continuity equation for the mixture, 
equation (1.31). As a result of this, it is found that 

(1.39) 


Equation (1.39) is valid for gases consisting of multiatomic molecules 
which possess internal degrees of freedom. In this case the qyantity E is taken 
to mean the sum of the energies of the translational and internal degrees of 
freedom of the molecules: 

(1.40) 


while the expression for the energy flux density vector (1.14) must be replaced
by the expression 

where ei is the energy of the internal degrees of freedom for particles of the ith 
sort. 

The energy balance equation (1.39) can also be written in terms of the tem
perature. In this case, using the continuity equation for  the ith component, equa
tion (1.30), it is found that 

Here 

aF 
c, :--= 2 ci(& = 2CiCUi (1.43) 

i i 

is the mean heat capacity at constant volume per unit weight of the mixture. 
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4. The rate of diffusion, flux density vectors and transport coefficients, /23-
The fundamental gas-dynamic equations of continuity (1.33), motion (1.35), 

and energy (1.39) or (1.42) have been obtained from the Boltzmann equation with
out defining-the form of the distribution function. However, it will be clear from 
a consideration of these equations that in order to make use of them in practice
it is necessary to have expressions for the rates of diffusion and the flux density 
vectors for mass, momentum and energy in terms of derivatives of macroscopic 
quantities with respect to the coordinates and the transport coefficients. 

In order to determine these quantities it is necessary to solve Boltzmann's 
equation, An extensive literature exists on the problem of obtaining approximate 
solutions of the Boltzmann equation (* ). It is not possible to deal in detail with 
this problem within the confines of the present book, and so we will confine our
selves to only a brief discussion of the concepts behind the most widely used 
method (the perturbation method of Enskog and Chapman) for solving the Boltz
mann equation. 

A s  is well known, a gas which is adiabatically isolated and which does not 
experience any external perturbing effects over a sufficiently long period of time 
ultimately reaches some equilibrium (steady) state. For systems which are in the 
steady state the distribution function f i  does not depend on time, as a result of 
which the right-hand part of the Boltzmann equation (1.15) becomes equal to zero. 
The equality to zero of the right-hand part of this equation expresses an equili
brium state in the collision processes which consists of the fact that the number 
of particles of the ith sort lost due to collisions over a certain range of velocities 
is exactly compensated by the number of particles arising as  a result of collisions 
during this time period. The conditions sufficient for equilibrium to exist can be 
obtained if it is assumed that the integrand in the right-hand part of the Boltzmann /24
equation is equal to zero, i. e. , 

f;f,: = fifj. (1.44) 

However, it is not clear if this is the necessary condition, since for the right-
hand part of the Boltzmann equation to be equal to zero it is necessary only that 
the integrand should assume positive and negative values in the region of inte
gration so that the integral is found to be zero. The fact that condition (1.44) is 
necessary is proved by the H-theorem of Boltzmann, the proof of which can be 
found in the monograph by Hirschfelder, Curtiss and Bird [l]. 

The equation (1.44) can be written in the form 

* 
I See, for instance, the monographs by Hirschfelder, Curtiss and Bird and 

by Chapman and Cowling [l, 21, which contain the results of the earlier work, 
A discussion of the results of more recent work can be found in the monograph 
by Kogan PI, 
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111 fi +' In fj = lnf, -1- I n  fj. 
(1.45) 

A s  a result, the logarithms of the distribution functions are summatory invariants 
of the molecular collisions. However, according to the conservation equations 
(1.20), the only quantities which can be summatory invariants during collisions 
are the mass mi, the momentum miv i' and the kinetic energy mivi/2. In the 
general case, therefore, In fi must be a linear combination of these quantities, 

i.e., 

where ai, b and c are constants which depend (through the initial distribution 
function) on the total number of molecules of the ith sort, the total momentum 
and the total energy of the system. By determining these constants from the 
conditions 

(1.47) 


the well-known Maxwell law is obtained for the distribution functions of systems F5-
which are  at equilibrium 

(1.48) 


where v i - v = V .  
1 

is the thermal velocity. 

If the gas mixture is in a nonequilibrium state, the distribution function can 
be derived by the Enskog-Chapman method by introducing into the Boltzmann 
equation a perturbation parameter 8 (l/s is a measure of the frequency of col
lisions). At  small values of E the collisions occur very frequently, as a result 
of which the gas can be regarded as a continuum, at each point of which local 
equilibrium is attained. In this case the distribution function can be expanded in 
a series with respect to the parameter E :  
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By substituting this series into the transformed Boltzmann equation 

(1.50) 


and equating the coefficients for equal powers of E ,  a system of equations is ob
tained for the functions f$), f$), etc, : 

(1.51) 


f J 

It is not difficult to see that the solution of the first equation of the system 
(1.51) is the Maxwellian distribution (1.48). 

The quantities 

ni = n i  ()*, I ) ,  ,t*= 2' ( r ,  t )  and 1' = T ( ) e ,  1 )  9 

which appear in the expression (1.48) are  arbitrary functions of the oodinates 
and time. In order for these quantities to correspond to their local values, it  is 
necessary that the solutions of the remaining equation of the system (1.51) satisfy 
the condition (1.47). In other words, the following conditions must be fulfilled for 
the distribution functions for approximations higher than the zeroth approximation,
or)f i ,  k=l, 2, 3, ...: 

(1.52) 


where li =: 4 ,  2, 3 , .  . . J 
By using the conditions (1.52) it is possible to obtain a solution for the 

second equation of the system (1.51), etc, The Enskog-Chapman method is ,  
essentially, a successive approximation method, which can be extended, in 
principle, to systems with large gradients of the thermodynamic and gas-dynamic 
variables. However, for solving the majority of gas-dynamic problems it appears 
to be sufficient in practice to solve the Boltzmann equation to the first approxima
tion. In this case, the manner in which the distribution function varies differs little 
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from the Maxwellian law (1 .48) ,  while the gradients of the quantities characterizing 
the macroscopic properties of the gas are  small in the sense that these quantities 
do not vary appreciably in a distance equal to the mean free path of the molecules. 

Readers who are  interested in the details of the mathematical solution of the 
system (1.51) are referred to the monograph by Hirschfelder et al. [l],which 
also gives some of the results obtained by solving the Boltzmann equations to the 
first approximation. 

The expression for the rate of diffusion is of the form /27-

(1 .53)  

where D.. and 9T are  the diffusivity and the thermodiffusion coefficient, respec
1J 

tively, in the multicomponent mixture; p is the pressure. It can be seen from 
equation (1.53) that in the absence of bulk forces, diffusion can arise for three 
reasons: 1) due to the action of a concentration gradient (mass diffusion); 2) due 
to the action of a pressure gradient (barodiffusion), and 3) due to the action of a 
temperature gradient (thermodiffusion). 

It should be noted that in the zeroth approximation (with a Maxwellian distri
bution of the particles with respect to the velocity, (1.481, the diffusion velocity 
Vi  and as  a result, the mass flux density vector for the ith component, j i' are 
equal to zero. 

The expression for the diffusion velocity of the ith component of the mixture 
(1.53) is usually difficult to use in practical calculations, since the diffusion co
efficients D.. of the multicomponent mixture which appear in this expression can 

1J 

be given to a first approximation in the form of a determination of the Nth order

I 	 (N is the number of components of the mixture) in terms of the diffusion coeffici
ents 97ij of the binary mixtures, and also the concentrations and molecular weights 
of the components, 

Instead of N formulas of the type (1.53), it is much more convenient to use 
the N-1 independent relationships 

(1.54) 
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The derivation of these relationships, which are  sometimes termed the 
Stefan-Maxwell relationships, can be found in the monograph by Hirschfelder, 
Curtiss and Bird [l l .  

If thermodiffusion and barodiffusion can be neglected compared with mass /28
diffusion, equation (1.54) can be simplified and assumes the form 

(1.55) 

By using equation (1.29) for the mass concentration, (1.55) can be transformed 
into the following form [41 

By making use of equation (1.56) it is possible to introduce the idea of the so-
called effective diffusivity si(*) :  

where 9.can be determined from one of the following formulas: 
1 

(1.58) 

From the definition of the effective diffusivity in (1.58) it is clear that in the @9-general case this coefficient depends not only on the composition of the gas mix
ture but also on the ratio of diffusion fluxes of the components, i. e. , essentially 

~ . .. .. I-..-. . -~- - . . .. .. . -. . - -. . .. . .. .. . . .. . . .. .. .-.-. . ._ ._ .. _ i~. ~ ~. . _ _- ~ .- . .  

* The concept of an effective diffusivity was introduced into practical bound
ary layer calculations by G. A .  Tirski'i. See, for instance, [5] and also the paper 
by this author mentioned above [41. 
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on the quantities being determined in an actual problem. This fact, which in some 
cases can lead to certain inconveniences in the calculation process,’ is not impor
tant in calculating turbulent boundary layers in multicomponent gas mixtures ( *) , 
since in most cases the method of successive approximations is the most conven
ient one. 

The value of the binary diffusivityg ij is determined from the expression 

(1.59) 

where p is the pressure, atm. ;Mi is the molecular weight of the ith component; 

CZ (kjl) * (T ?.) is the collision integral for mass transfer, which is a measure of 
1J 

the deviation from the model in which the gas molecules are  regarded as solid 
i jspheres, for  which CZ ( ”’)*= 1;T is the temperature, OK; T?

9 
= kT/E.. is a char

1J 
acteristic temperature, OK; e. ./k is the potential energy parameter of the mole

1.l 
cule characterizing interactions of molecules of the ith and jth sorts, OK; p.. is 

1J 
the effective collision diameter of the molecules (Angstrom units). 

Values of the function S2 i j  ‘)*(T?.) for  0.3 5 T?. 5 400 a re  given in [I].
1J 13 

It can be seen from equation (1.59) that the binary mixture diffusivities 
9..
are  relatively insensitive to moderate changes in the molecular weights of 

1J 

the components. Thus, if any gas mixture consists of two groups of components, 
each of which has an approximately uniform atomic o r  molecular weight and an 
approximately constant transverse cross-sectional area of collision, then this / S O-mixture can be regarded as  an “effective” binary mixture in which each of the 
groups behaves as one component, However, it must be remembered that in com
puting energy transport it is necessary to take into account strictly the enthalpies
of the individual components. 

For a binary mixture it is not difficult to obtain from equation (1.53) the 
following expression for the diffusion flux of the ithcomponent: 

*Detailed information on molecular diffusion, just as information on molec
ular thermal conduction and viscosity, is an essential requirement for studying 
turbulent boundary layers in hypersonic streams as a result of the important part 
which is played by the laminar sublayer in processes involving the transport of 
heat and mass. 
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(1.60) 

Here 

1 . 
'1' / I  I / / /  

I
. / I 1  

J 
. 5 i ;  

(1.61) 

is the ratio of the thermodiffusion coefficient to the binary diffusivity, which is 
known as the thermodiffusion ratio. This ratio characterizes the relative impor
tance of thermodiffusion and mass diffusion. 

By using equation (1.29) it is possible to rewrite equation (1.60) in terms 
of the mass concentration, giving 

(1.62) 

In flows of the boundary layer type the contribution of barodiffusion to the 
total mass transfer is always negligibly small compared with the contribution of 
mass diffusion, since to an accuracy to terms of the order of 1/Re, the pressure 
is constant across the boundary layer. The term characterizing thermodiffusion 
is also usually small compared with that describing mass diffusion. In a turbulent 
boundary layer, where it is only necessary to take molecular diffusion into account 
in the laminar sublayer which usually occupies a small part of the total boundary 
layer (although in some cases the sublayer thickness may be more than 50% of the 
thickness of the total boundary layer), it is possible to confine our attention to 
mass diffusion only (*). In this case, equation (1.62) assumes the form known as -p i
Fick's law: 

(1.63) 

Continuing the consideration of the results obtained by solving the Boltzmann 
equation to the first approximation, the expression for the pressure tensor can be 
written as  

(1.64) 

* 
Exceptions must be made for flows of multicomponent gas mixtures con

taining components which differ very widely in molecular weight, such as, for 
example, hydrogen and air, helium and air. 
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where 
p = nlzT (1.65) 

is the equilibrium static pressure at the local temperature and density of the 
particles ; 

(1.66) 

is the unit tensor; 6 is the rate of deformation (shear rate) tensor, defined by 

(1.67) 

p is the dynamic viscosity. 

The diagonal and nondiagonal elements of the pressure tensor are  equal to 

P a ,  7:p + +p (; ..>-2p ax ; (1.68) 

--+-7;), a,p- 1, 2, 3. IPa,= - 11 ( 2  
It can be seen from equation (1.68) that the pressure tensor differs from 

the one usually considered in continuum mechanics [6] and termed the stress 
tensor only in the sign. 

In the case of an N-component gas mixture, the dynamic viscosity intro
duced above is determined from the expression [13r 

(1.69) 
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where 

(1.70) 


x. = ni/n is the molal concentration of the ith component; pi is the viscosity of 
1 

the ith component, equal to 

(1.71) 

q. is the collision diameter; Tf = kT/Ei is a characteristic temperature; E./k is
1 1* 

the potential function parameter for intermolecular interactions; Q (212)is the 

collision integral for momentum transfer, which is a measure of the deviation 
from the model in which the gas molecules are regarded as solid spheres, for 
which Q(2,.2) * = 1. Values of the function Q (2,.2)*(T.*)are given for a wide range J331 1 1 -
of values of T.* in the monograph by Hirschfelder et al. [l]; p.. is a coefficient 

1 13 
given by 

(1.72) 

where a (2,.?) * is the collision integral for momentum transfer of the ith and jth
13 

components. These values are also given in [l]. The quantity A* appearing in 
i j  

(1.70) is equal to A?. = */Q(',.!)* . 
13 13 11 

In equation (1.69) the nondiagonal elements H.. are usually small compared
13 

with the diagonal elements Hii. For the nondiagonal elements to be exactly equal 
to zero, it  is necessary that A? = 5/3. If this assumption is used for the diagonal

13 
elements, equation (1.69) assumes the form 
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(1.73) 


However, equation (1.73) is not very well confirmed by experiments. In 
order to bring this formula into agreement with the experimental data it is neces
sary only to replace the factor 2 in the denominator by the empirical coefficient 
1.385, i. e., 

(1.74) 


k P  i 

Calculation of mixture viscosities according to this formula is quite time-
consuming, so that in many cases it is more convenient to use the admittedly less 
accurate relationships of a simpler nature. In particular, the dynamic viscosity
of a pure gas can be calculated from the well-known Sutherland formula: 

(1.85) 


Values of the coefficients K' and C' for several gases and also generalized data on 
the viscosities of pure gases and mixtures are contained in the monographs [7,81. 

The energy flux density vector q for a multicomponent mixture of monatomic 
gases which is obtained by solving the Boltzmann equation to the first approxima
tion has the form 

(1.76) 


where h is the thermal conductivity and hi-is the enthalpy of the ith component 
per unit weight, given by 

(1.77) 
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It is clear from equation (1.76) that in a multicomponent mixture the trans
fer of energy is accomplished by three mechanisms. The first term in the right-
hand part of equation (1.76) describes the transfer of energy as a result of 
thermal conduction, the second the transfer of energy as a result of mass tram
fer by means of all forms of diffusion (mass diffusion, barodiffusion and thermo
diffusion), and the third term describes the additional energy flux caused by the 
di�fusion thermoeffect (the Dufour effect). 

For gas mixtures consisting of polyatomic molecules, the energy flux 
density vector has the same form as for monoatomic gases, (1.76), except that 
in the enthalpy hi it is necessary to include all of the quantities given in the sum 

b 5-

(1.78) 

where ei is the energy of the internal degrees of freedom of the molecules. 

In flows of the boundary layer type the contribution of the diffusion thermo
effect to the total transfer of energy is usually not large, so that with a sufficient 
degree of accuracy for practical purposes it can be assumed that the energy flux 
density vector for a multicomponent mixture is given by the expression 

q r -- (1.79) 

If equation (1.53) is used for the mass flux density vector of the ith com
ponent, and if  it is assumed that thermodiffusion and barodiffusion can be neglected, 
then equation (1.79) can be rewritten in the form 

(1.80) 


The quantity in brackets can be regarded as an effective thermal conductivity, 
consisting of two parts: h is the thermal conductivity of the gas mixture caused 
by molecular collisions, and 

(1.81) 


is the conduction of heat due to mass transfer, i .e.,  

heff = A + AR. (1.82) 
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If the transfer of mass is as  a result of the occurrence of some chemical 
reaction (dissociation, ionization, etc. ) , thg thermal conductivity A is termed 
the thermal conductivity of the gas in the “frozen” state, i. e. ,  in the absence of 
chemical reactions, and A R is the thermal conductivity as a result of the chemi

cal reaction. For gases which consist of molecules of one sort which do not possess 
internal degrees of freedom (the internal degrees of freedom are “frozen“), the /36
thermal conductivity is expressed a s  follows ( A  = 0) : 

where c
V 

is the heat capacity per unit weight at constant volume. 

Gases consisting of molecules of one sort which possess internal degrees of 
freedom and which are in various excited quantum states can be regarded as  gases 
represented by a chemically reacting mixture with a large number of components, 
each of which possesses no internal degrees of freedom. If it  is assumed that the 
transfer of energy from the translational to the internal degrees of freedom is 
large, or ,  in other words, that the distribution of molecules with respect to the 
various states is an equilibrium distribution corresponding to the local tempera
ture, then for monoatomic molecules (of one sort) it  is possible to obtain the 
following expression for the effective thermal conductivity [l]: 

(1.84) 

where y = c
P

/c 
v’ 

3 is the self-diffusivity, which is defined as the limiting form 
of the diffusivity of a binary mixture, An expression for the self-diffusivity can be 
obtained from equation (1.59) by substituting i = j in it. The dimensionless quan
tity p T / p  is a function of temperature, and has a value of the order of unity. If 
this quantity is assumed to be equal to unity, the following formula is obtained 
for the thermal conductivity of the monoatomic gas: 

4iA e B  = --(9y - S)c,p. (1.85) 

The factor (9y - 5)/4 is termed the Eucken correction. Equations (1.84) and (1.85)
do not agree very well with experimental data at ordinary temperatures, since the /37-transfer of energy from the translational to the internal degrees of freedom is 
difficult at these temperatures; however, at high temperatures, equation (1.54) 
appears to be quite accurate. 

A t  present the thermal conductivities of mixtures of monoatomic gases can 
be calculated to a high degree of accuracy on the basis of the Chapman and Enskog
theory. The existing methods of calculation are  extensions of the Chapman-
Enskog method, and make it possible in principle to calculate the thermal 
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conductivities of mixtures of monoatomic gases at high temperatures. To carry 
out calculations with these methods it is necess.ary to know the interaction poten
tials among the particles. However, in many cases of practical importance, 
these potentials a r e  still not sufficiently well known, Information is particularly 
limited on the interaction potentials of electrons with atoms, ions and molecules. 
Collisions in which electrons participate can be neglected in  calculating the vis
cosity, since the electrons transport only an insignificant part of the total momen
tum as  a result of their very small mass. However, it is impossible to neglect 
collisions of electrons with other particles in calculating the thermal conductivity, 
since with their high velocities the electrons transport a significant part of the 
total kinetic energy. A detailed consideration of the problems of determining the 
transport properties in air  at high temperatures can be found in the paper by 
Hansen [9]. Practical methods of calculating thermal conductivities in pure gases 
amd mixtures are  contained in the monograph by Bretsznajder [ 8 ] .  

5. Equations for the dynamics of multicomponent reacting gases. 

The expressions obtained in the preceding section for the flux density vector 
for mass (the diffusion velocity) of the ith component, (1,53), the pressure ten
sor, (1.64), and the energy flux density vector, (1.76), make it possible to write 
the gas-dynamic transport equations (section 3) in macroscopic form. However, P8-
before doing this, let us collect all the transport equations, retaining the vector-
tensor notation, The continuity equation for a gas mixture is 

the continuity equation for  the ith component is 

(1.33) 

the equation of motion is 

(1.35) 

and the energy equation is 

(1.39) 

In order to close the system of equations (1.Yl), (1.33), (1.35) and (1.39), 
which involve the five variables v, p ,  p, e.

1 
and E (or T), it  is necessary to add 

to this system the equation of state for the gas mixture 
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(1.86) 

By substituting into equation (1.35) in place of the pressure tensor its ex
pression (1.64),' the following form of this equation is obtained: 

dlJ a (1.87) 

Both here and subsequently, 

(1.88) 

The energy equation (1.39) can be converted from the internal energy E to 
the enthalpy h, which are  interrelated by the formula 

h = 12 4--P , (1.89) 

with simultaneous replacement of the pressure tensor by equation (1.64), giving /39 

(1.90) 

Bearing in mind the equation 

(1.91) 

equation (1.90) can be transformed into 

(1.92) 

There is still another form of the energy equation, which can be obtained readily 
from equation (1.39) by using equations (1.35), (1.64), (1.88) and (1.89) : 

(1.93) 
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In what follows, the quantity 

119h+-==lI  (1.94)2 

wil l  be termed the total enthalpy of the gas. 

If the expression for the mass flux density vector (1.10) is substituted into 
the equation of continuity for the ith component, and use is made of relationship 
(1.53) for the difEusion velocity and the molal concentration xi is replaced by the 
mass concentration ci by means of equation (1.29), it is found that 

(1.95) 

If barodiffusion and thermodiffusion are  neglected in comparison with mass 
diffusion, and if the effective diffusivity sidefined by equation (1.58) is used in 

place of the diffusivity of the multicomponent mixture 57 ij, equation (1.95) assumes /40-
the form 

(1.96) 

In the case of a binary mixture, 3 is equal to the diffusivity of the binary mix
ture Y ij, and equation (1.96) can then be written in the form 

(1.97) 

Let us now consider the energy equation in the form (1.93). By substituting 
the expressions for the energy flux density vector (1.76) and the mass flux dens
ity vector (1.lo) ,  (1.53) into this equation it is found that 
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A s  mentioned above, the contributions of barodiffusion to the transport of 
mass and energy are very insignificant in flows of the boundary layer type, In 
many cases, the contributions of thermodiffusion in the transport of mass and 
energy (the diffusion thermoeffect) are also very small. If these effects are  neg
lected and the effective diffusivity is used instead of the diffusivity in the multi
component mixture the following form of the energy equation is obtained: 

However, bearing in mind that 

N 'I' 

A .- 2C i h i ,  hi - \ c,,i 12' 4.-I$ 
i 0 

and that consequently, 

equation (1.99) can be transformed to 

(1.99) 


(1.100) 


(1.101) 

Here h; is the heat of formation of the ith component under standard conditions. 
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Two new parameters, the Lewis number and the Prandtl number, have 
been introduced in equation (1.102) ;these are  defined as 

(1.103) 


The effective Schmidt number is dependent on these parameters; it is defined as 
the ratio of the Prandtl and Lewis numbers: 

(1.104) 


In the general case the effective Lewis  and Schmidt numbers introduced in this 
way cannot be regarded as similarity parameters like the Prandtl number, since 
the effective diffusivity depends by definition on the diffusion fluxes of the indi
vidual components, and hence on the parameters to be determined in most prob
lems. However, in the special case of a binary mixture the coefficient 3.  be

1 

comes equal to the binary mixture diffusivity gij,which, as equation (1.59) 
shows, is independent of the unknown flow parameters. In this case the Lewis 
and Schmidt numbers formed from the binary mixture diffusivities 

(1.105) 


can be regarded as similarity parameters. 

By considering equation (1.102) it can be seen that if the Lewis number is 
equal to unity (Le.

1 
= 1) the energy equation has the same form as the usual energy 

equation for a gas of uniform composition. 
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CHAPTER II. 

I TURBULENCE IN GAS-DYNAMIC FLOWS 

6. 	 The equations of turbulent motion /43 

In turbulent flow the fields of velocity, pressure, temperature, concentra
tion and other gas-dynamic properties have very complex structures. The com
plexity of these fields is caused by the extremely irregular and random nature of 
the changes in these parameters in both space and time. If the space-time scales 
of the turbulence (i.e.,  the minimum spatial dimension of the turbulent non
uniformities and the characteristic period of the turbulent pulsations) are  much 
larger than the space-time scales of the molecular motion (i.e. , the mean free 
path of the molecules and the mean time between two molecular collisions, 
respectively), the equations obtained in the preceding section can be used in 
principle for describing the turbulent motion. 

Experiments have shown that the space-time scales of turbulence are always
several orders of magnitude greater than the space-time scales of molecular 
motion, and, as  a result, the description of the turbulent motion by means of the 
differential transport equations is quite valid. However, it is impossible to apply 
these equations directly in practice, since the fields of the gas-dynamic quanti
ties in turbulent flows are  always in the unsteady-state and are strongly influenced 
by the initial conditions, which a re  usually far from completely known. This 
means that a complete, detailed description of turbulent motion is impossible.
However, in practice this detailed information on the fields of the gas-dynamic 
quantities is not required in most cases, since interest centers only on the 
averaged (statistical) characteristics of these fields. The fact that turbulent -motion can be described by the differential transport equations is very important, /4-4 

since as a result of this it appears possible to establish (though not completely) 
relationships among the averaged characteristics of the fields of the gas-dynamic
quantities. 

The procedure which makes it possible to establish this type of relationship 
for the case of flow of an incompressible isothermal fluid was first indicated by 
Reynolds [lo]. This procedure has not been described in quite sufficient detail in 
the literature [ l l ,  61, and so we will only note very briefly its essential points. 
Reynolds proposed to represent the values of all the gas-dynamic properties in a 
turbulent stream in the form of sums of averaged and pulsating components, and 
to study only the averaged parts, which vary relatively smoothly in time and space. 
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In order to determine the mean value of any particular quantity, Reynolds pro
posed the.use of ordinary averaging over a suitable time period (time averaging). 
It should be noted that other forms of averaging are also possible, for example, 
averaging over a given region at a particular moment of time (spatial averaging), 
o r  averaging for a large number of fields which vary both from point to point and 
also from one moment of time to another (statistical ensemble averaging), With
out going into details of the advantages and disadvantages of the various forms of 
averaging, it should only be noted that the instruments usually used make it pos
sible to measure the average values of quantities with respect to time, so that 
time averaging appears to be the most important type*. 

Following Reynolds, the instantaneous value of each of the unknown quanti- -/&ties o r  their combinations is expressed in the form of the sum of an averaged 
(f) and the pulsating components ( f '  ) : 

Time averaging, as described by the equation 

is understood by the term "averaging", in which the averaging interval At is 
assumed to be quite large in comparison with the characteristic pulsation period 
of the field and sufficiently small compared with the period of averaging of the 
field. If the averaged field is steady, i. e. , if its period is infinitely large, the 
mean value of the quantity f can be expressed by the relationship 

A s  Reynolds showed, in any averaging process (not only time-averaging) 
a necessary reqyirement is that the following relationships (which have become 
h o w n  as the Reynolds conditions) must be satisfied 

* A  detailed discussion of the problems of evaluating averages of quantities 
in the theory of turbulence can be found in the monograph by A .  S. Monin and 
A .  M. Yaglom [ll]to which reference was made above. 
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4) 2,-37 as as 

where s is x, y, z o r  t ;  

(2.4
cont'd) 

By substituting successively in (2.4) g = 1, g = E, and g = h' = h - 6 
(where the prime denotes the pulsating component of the quantity) the following /46-important results are obtained from the Reynolds conditions : 

(2.5) 


By using these results, it is possible to establish the following important further 
rules for the averaging of products of two or three variable quantities: 

The pulsating components of products of two variables a re  obviously given by 

Passing now to the derivation of the averaged equations of turbulent motion 
for multicomponent reacting gas mixtures *it is convenient to write the continuity
equations for the mixture and for the ith component and the equations for momen
tum and energy transport in tensor notation: double repeated subscripts a r e  
taken to mean summation with respect to the values 1, 2, 3, corresponding to 
the components of the vectors or  tensors in the x, y, and z directions respectively
(this rule is not extended to the subscript i). 

In this notation, the continuity equation for a gas mixture (1.31) assumes 
the form 

aat + - - ( P V j )  r= 0.3. a s .  

The continuity equation for the ith component, (1.33), can be rearranged by using 
equation (2.9) to the form /47 

* The derivation of the equations of turbulent motion of a compressible 
homogeneous gas was first given by Van Driest [12]. 
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For writing the momentum transport equation use is made of ecjyation (2.9) 
and the expression for the pressure tensor, (1.64), as a result of which 

(2.11) 

The energy transport equation is taken in the form (1.93).  By using the 
expression for the heat flux (1.79) and equation (2 .9) ,  it is found that 

(2.12) 

In these equations the subscript i denotes the number of the component, while the 
subscripts j and k assume the values of 1, 2 ,  3. 

By combining with the continuity equation (2.9) the averaging operation 
(2.2),  and assuming that it is possible to represent this operation with differ
entials with respect to the spatial coordinates and time (the fourth of Reynolds' 
conditions in 2.4), it is found that 

:--0. (2.13) 

On expanding the term pv. according to equation (2.6), it is found that
J 

- _ _ 

puj :-:p 'jj -1P'l?j. (2.14) 


Thus, in the flow of a turbulent incompressible gas, the continuity equation 
for the compressible gxts will have the form 

a-a; -I- -($Illj) - I - a (9'1);) : ' 0 .  (2.15)at as as j  

In contrast to the continuity equation for  incompressible fluids, equation (2.15) -
contains derivatives with respect to the coordinates of the averaged flow rate of 

/48 

the pulsating momentum. The deficiencies of our knowledge of the general nature 
of turbulence make it impossible at present to make a quantitative evaluation of 

athe contribution of the term a s  ( P V . )  in the continuity equation, From physical
j 3 
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-- reasoning it is clear that -
P’l’j <poj, -

but the conditions under which it is possible to neglect the quantity pfv’
j 

in 
comparison with pv.

1 
remain an open problem. This fact makes the derivation 

of the equation for the averaged turbulent motion of a compressible gas (if dens
ity pulsations are not neglected) an essentially formal procedure. 

If the continuity equation for the ith component, equation (2, lo), is now 
averaged it is found that 

a c - , a - - a 
“t!ci T z ( p u i ) c i  =zcj --(~l’ij)ci .  (2.16)as _ _ j 

By applying the relationship (2.6) to this equation and carrying out the differen

tiation indicated in the left part of the equation, it is found that 


It can be noted that the sum of the first and sixth terms of the left-hand part of 

equation (2.17) is equal to zero as a result of the equation of continuity (2. 15),

and that the last term on the right-hand side of the equation can be discarded 

because of its smallness compared with the second term on the same side of 

the equation : 
/49 

It is then seen that* 

(2.19) 

*It should be noted that the operation of averaging the mass rate of forma
tion of the ith component wi is not indicated her since at the present time in 
using the averaged continuity equation for the itg’component in a turbulent stream 
the approximation is generally accepted according to whichvi is taken to me= 
the expression (Wi) in which all the variables are averaged with respect to time. 
Attempts to take into account pulsating terms in the expression Gi lead to diffi
culties which a re  presently insurmountable. 
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The validity of the inequality (2.18) is based on the circumstance that, as  
is well known, the molecular properties of the medium play an important part in 
turbulent streams only in the region adj_acentto the walls (the laminar sublayer), 
where the turbulence is damped. Snce V..

9
is the rate of molecular diffusion it is 

clear that the pulsating component of the diffusion flux in this zone will be small 
compared with the averaged component, 

It can be seen from equation (2.19) that in addition to the transport of 
material caused by molecular diffusion, in turbulent flows there is also a trans
port of material caused by the mjxing set up by the pulsations of density, velocity 
and concentration (p.By analogy with molecular diffusion, the process of 

3 1 
mass transfer in a turbulent stream caused by pulsations of the density, velocity
and concentration is termed turbulent diffusion. 

The derivation of the averaged equations of motion (based on equation 
(2.11)) does not contain any further difficulties beyond those in the derivation 
of the averaged continuity equation (2.19), and is completely analogous to the 
latter. Thus, omitting details of the derivation, these equations can be written 
in final form bo-

(2.20) 

It should be noted that in deriving these equations the terms involving viscosity 
pulsations were neglected compared with the terms containing the averaged values 
of the viscosity, for the reasons indicated in the note to equation (2.18). Equation 
(2.20) is known as the Reynolds equation for a compressible gas. The quantities 
( pv.)'vk appearing in (2.20) have the significance of components of an additional

3 
stress tensor which arises as  a result of the presence of the turbulent pulsations 
of the mass flow rate and velocity. These additional stresses are usually termed 
the Reynolds stresses. 

In setting up the equations for energy transport in the averaged turbulent 
motion of a multicomponent reacting mixture, the pulsations of viscosity, thermal 
conductivity, diffusivity and specific heat capacity are compared with their aver
age values. 

By averaging equation (2.12), and using as  before the interchangeability of 
the operations of averaging and differentiation with respect to the coordinates and 
time, it is found that 

(2.21) 
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Each of the four terms on the left-hand side of this equation can be re
arranged individually, making use of relationships (2.6) - (2.8); this gives 

When these expressions are substituted into the initial equation (2.21) the result 
is 

(2.22) 
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. .  . .  . ,  	 (2.22 
Cont’d) 

’In this equation, the sum of the second, fourth, eleventh and fifteenth terms 
of the left-hand part is equal to zero as a result of the continuity equation (2.15); 
the eight, fourteenth and twentieth of the left side can be discarded a s  a result of 
their smallness, since they contain triple products of pulsating quantities. It is 
not difficult to see that the sixth and eighteenth terms on the left side can also be- -
neglected, since vk‘ << v l .  For the same reasons for which the last term in 
equation (2.17) was omitted, it is possible to omit the fourth and sixth terms of 
the right side of the equation. In order to simplify equation (2.22) further, the 
fifth, seventh, sixteenth and seventeenth terms of the left side are  grouped to
gether, giving 

and it is not difficult to see from equation (2.20) that this is equivalent to the 
expression 

aq - z <  + ~ ( 2 { l L S & )ai Si  

Bearing this in mind, and carrying out some simple rearrangements, the energy 
equation is reduced to the following form 

(2.23) 

In equation (2.23) the term (pv.)fh! expresses the transfer of energy of 
J 1 
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the ith component caused by turbulent pulsations. The term (pvj)'c;hi
1 


expresses the transfer of energy as a result of turbulent mass transfer (turbulent 
diffusion). The term (pv.)'v& avkasdefines the rate of conversion of energy of 

J j
the averaged motion into turbulent energy as a result of the action of the Reynolds 
stresses. The term 

i
2 Ei(pv.)'h; expresses the total quantity of energy trans-

J 
ferred by all the components of the mixture as a result of the turbulent pulsations. 

By analogy with molecular heat conduction, the process of energy transport 
in a turbulent stream caused by the pulsations of density, velocity and enthalpy
is termed turbulent heat conduction. 

Let us now consider the averaging of the equation of state (1.86). By using 
the rule (2.7) and neglecting triple products of pulsating quantities, it is found 
that 

(2.24) 

Equations (2.15), (2.19), (2.20), (2.23) and (2.24) represent the system of 
eqyations for the averaged turbulent motion of a multicomponent reacting gas
mixture. It must be mentioned at once that at present it is impossible to utilize 
this system of eqyations even within the limits of the semiempirical boundary 
layer theory without making a whole series of assumptions, the validity of which 
in many cases is far from obvious. A s  mentioned already above, our information 
on the nature of turbulence does not permit the evaluation of the contributions to /54-the transport processes of the terms in the equations which involve density pulsa
tions. In all existing theories which use these equations or modifications of them, 
therefore, the terms containing the density pulsations are  neglected. Of course, 
this does not mean that the density is regarded as constant. Where necessary, 
the averaged density is regarded as a variable quantity. 

If the terms containing the pulsations of density a re  neglected in the equa
tions for the averaged turbulent motion of a multicomponent reacting gas mixture, 
and if all the pulsating terms are  neglected in the equation of state*, so that only
"steady-stateff turbulent flow is considered in what follows in which the averaged 
values of the velocity, enthalpy, density, etc., are  independent of time, the fol
lowing system of equations is obtained: 

(2.25) 

. .  . . . ? f _  .. _ _ _- .. . ~.._~ -. . _Iri_C_ . . . . __.-_I_. .  ,. .  . . . . .. . - - ~  , .. . .  . .__

* For the equation of state the same assumption is made as for the mass rate 
of formation of the ith component wi (see note on p. 48). 
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(2.26) 

(2.27) 

(2.28) 

(2.29) 

It will also be assumed in formal terms that 

(2.30) 

(2.31) 

(2.32) 

where E ,  !D and h T are respectively the turbulent viscosity, turbulent diffu

sivity and turbulent thermal conductivity. In contrast to the molecular viscosity, 
diffusivity and thermal conductivity, the turbulent viscosity, diffusivity and 
thermal conductivity do not represent physical properties of the gas, but are 
statistical properties of the pulsating motion. These coefficients are therefore 
functions of position and time. It is important to note that far from a solid sur
face the turbulent transport coefficients greatly exceed the values of the corre
sponding coefficients of molecular transport. 

By analogy with the molecular Prandtl, Lewis and Schmidt numbers, equa
tions (1.103) - (1.105), their turbulent analogs can be introduced here: 

(2.33) 
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-- 

(2.34) 

esc, = - p c  (2.35) 
p a ,  

Although the turbulent transport coefficients E ,  2l and A are  in general func
tions of position and time, their dimensionless combinations PrT,  LeT and ScT 
are usually regarded as quantities which vary very little, and in many cases of 
practical importance it is possible to regard them as  constants. Numerical 
values of PrT, LeT and ScT have not been accurately established up to the pres
ent time. The few available experiments data on the magnitudes of these numbers 
are rather contradictory; nevertheless it can be said that in boundary-layer type
flows close to solid surfaces PrT and ScT are close to unity; in turbulent jet 

flows they a re  close to 0.5 - 0.7*. 
By using relationships (2.30) - (2.32),  and omitting the averaging symbol /56-for simplicity in what follows, the system of equations (2.25) - (2.29) is reduced 

to the form 

(2.37) 

(2.39) 

C .  
p = p R T  'iz-?--. (2.40)M ,  

By using equation (1. lOl), which in tensor notation has the form 

.. . . . . . .  - .  . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . ..._.~ . . .  - . . . .  - . . . .  . .  

* See Section 15 for a discussion of the turbulent Prandtl number. 

41 


I 




(2.41) 

and bearing in mind equations (2.33) - (2.35),  the energy equation (2.39) can be 
rearranged to the form 

(2.42) 

If equation (2.42) is written in terms of the total enthalpy H, defined by equation 
(1.94) instead of the enthalpy h the following equation is obtained by using (2.38) : 

(2.43) 

The system (2.36) - (2.40) contains 5 + N + j equations (of the N equations for the /ti7-
c = l ) ,  and does not, genconcentrations only N - 1are  independent, since i i  

erally speaking, define the turbulent flow completely, since it contains the 5 +N + j 
unknown functions vj' p, p , h, c.

1 
(i = 1, 2 ,  ..., N) and the undefined coefficients 

of turbulent viscosity E , diffusivity 3 and thermal conductivity A T .  In other 

words, the system of equations (2.36) - (2.40) is not a closed system. This un
closed nature of the system of equations describing the processes of turbulent 
transport makes i t  impossible at present to set up theories of the type which 
would make it possible to calculate turbulent motions by purely theoretical means 
even in the very simple case of the flow of a homogeneous, incompressible iso
thermal fluid. A l l  the existing theories of turbulence in incompressible homogen
eous fluids are semiempirical, since they are based both on certain rational 
argunients and on a number of empirical results. The solution of problems of 
turbulent motion in the more complicated cases of flows of compressible heat-
conducting reacting gases is usually based on generalizing to these cases the 
semiempirical theories developed for incompressible fluids. However, even in 
such a semiempirical approach the use of the system of equations (2.36) - (2.40) 
obtained above is very difficult as  a result of its great mathematical complexity. 
A s  a result, in many cases of practical importance it is very desirable to make 
simplifications to this system which are based on the boundary-layer theory. 
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The _ _ _  --_ . 7. -- turbulent boundary layer- equations in a multieomponent reacting gas. 

The application of the system of equations (2.36) - (2.40) to the flows in 
the thin boundary layers which are formed on the walls of channels or on the 
surfaces of bodies during their motion through gaseous media makes it possible 
to simplify the system appreciably. The series of assumptions involved (first 
formulated by L. Prandtl) and which form the basis of modern boundary-layer 
theory are well known. 

Let us consider a fully developed two-dimensional averaged flow with 
averaged velocities v1 = u and v, = v in the directions si= x along the surface of 
the body and sa = y along the normal to the surface of the body, respectively 
(Fig. 1). 

Figure 1. 

Following Prandtl's fundamental idea, the entire flow field is divided into 
two regions: a thin region of eddying flow adjacent to the surface of the solid in 
which the flow parameters vary rapidly from the wall values to the values in the 
outer stream (the boundary layer), and a zone of irrotational (potential) flow (the
external flow). The thickness of the boundary layer 6 is regarded a s  small com
pared with the distance x. The quantities x and u a re  taken to be of the order of 
unity, i. e . ,  

x- 0(1)and u- 0 (1); 

then 

y* O ( 6 )  andv- O(6)  

and so 
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The orders of magnitude of the pressure, density, concentration and enthalpy are b9-taken to be unity: 

P -0 (I)?p -0 ( I ) ,  ci -0 (i),h -0 (1). 

If it is assumed that the terms in the equations of the system (2.36) - (2.39) 
which contain 1-1, A , E , g , h and 5 do not exceed in their order of magnitude 
the remaining terms, it is not difficult to conclude that 1.1, A , e ,  gT,and A T  
must have orders of magnitude not exceeding -6 and that Pi has an order of 
magnitude not greater than 6 .  

On the basis of these evaluations and by retaining in the equations of the 
system (2.36) - (2.39) only the terms of the same order of magnitude, this 
system is reduced to the following form 

(2.45) 

(2.48) 

Equations (2.42) and (2.43) respectively assume the forms 

(2.49) 

and 
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In equations (2.45) and (2.48) - (2.50) the diffusion rate is determined in 
general from the expression (1.53). However, as  noted in section 3, the effects 
of baro- and thermo-diffusion are usually small in boundary layers. This is 
particularly true of turbulent boundary layers where the region in which the 
molecular transport. processes have an effect occupies only a part (and often a 
very insignificant part) of the total boundary layer. If the effects of baro- and 
thermo-diffusion on mass transfer are  neglected compared with mass diffusion, 
an expression arising from (1.57) is obtained for the rate of diffusion. The pro
jection onto the y axis is 

0, aci 
Vi" = - r a y  ' (2.51) 

Here 91 is the effective diffusivity, defined by equation (1.58). In the case of a 
binary mixture, 3 becomes the binary diffisivity F.. for the mixture. 

1 J  

By substituting equation (2.51) into the continuity equation for the ith com
ponent, (2.45), and the energy equation (2.48), and dropping the relationship
(2.47), the system of equations for the turbulent boundary layer in a multi
component reacting gas mixture is reduced to the folling form: 

(2.53) 


(2.54) 
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The energy equation in the form (2.50) can be transformed to the following form 
by substituting equation (2.51) in it: 

(2.55) 

It should be noted that in a turbulent boundary layer there is a transitional 
(buffer) zone at some distance from the wall; in this zone the molecular and tur
bulent transport coefficients have the same order of magnitude. In this zone also, 
the boundary layer equations derived above are inexact, since certain quantities 
(pulsations of the molecular terms) which play an important part in the transition 
zone were neglected in deriving the general equations of turbulent motion, from 
which in turn the boundary layer equations were obtained. A s  a result, the equa
tions of motion (2.52),  energy (2.54), ( 2 . 5 3 ,  and continuity for the ith component 
(2.53) in the form in which they are  written assume that the boundary layer is 
divided into two zones, with different flow conditions: the turbulent core, in 
which p << E ,  h << T, d i  << 2JT, and the laminar sublayer, in which p >7 8 ,  

The continuity equation for the ith component, equation (2.53) is written for 
mass concentrations of the individual components of the mixture, and is non
homogeneous in the presence of homogeneous chemical reactions in the stream 
(wi # 0). In some cases it is more convenient to write these equations not for the 
mass concentrations of the components but for the mass concentrations of the 

individual chemical elements regardless of the fact that these elements are @om

bined into chemical compounds. In this case, the diffusion equation becomes /6 2
-
homogeneous in the absence of nuclear reactions. Actually, if we use the notation 

(2.56) 

for the concentration of the kth element in the ith component of the mixture, 
where Nk is the number of atoms of the kth element in the ith component, then 
the quantity wicE represents the mass rate of transfer of element k in component 
i. Since the mass of the element is conserved during a chemical reaction, 

(2.57) 
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The concentration of the element k in the mixture will obviously be equal to 
ck = Z cklci. Consequently, by multiplying the diffusion equation (2.53) by cki 

i 
and summing over all the components of the mixture, an expression is obtained 
for the continuity equation of the kth element in the form 

(2.58) 

Sometimes it is convenient to write the turbulent boundary layer equations
in terms of the variables derived by L. Crocco. A s  one of the variables, Crocco 
proposed the use of the longitudinal veIocity component u. The formulas for con
verting from the variables x, y to the Crocco variables 5 = x, u are of the 
form *: 

(2.59) 

When this conversion is carried out for the continuity equation (2.44) and 
the result is multiplied by ( p + E ) /  7,it is found that 

(2.60) 

After converting to the variables 5 ,  u and reducing both parts by the same 
fat-or T / ( p  + E ) ,  the equation of motion (2.52) assumes the form 

-pu ++pv = d p  p + e  +au’ (2.61)4 7 

By differentiating both parts of (2.61) with respect to u, it is found that 

By subtracting both parts of this equation term by term from (2.60) and using the 

- -. .. -. . . .. - . . _____^.._.  . . . , . . . ~- - . - . . . . .  . ~~ 

*The derivation of these conversion formulas is given in [13], p. 335. 
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relationship 8 y/O u = (/A + 6 )  / T , v can be eliminated to leave 

(2.62) 

Similar rearrangements can be carried out for the continuity equation of the 
ith component (2,53). This is first rewritten in terms of the new variables 

and then by means of (2.61) the expression within the round brackets on the left 
can be eliminated; bearing in mind equations (1.104) and (2.35),  it is possible to 
obtain after simple rearrangements 

(2.63) 

By applying the transformation (2.69) to the energy equation (2.55),  and 
carrying out certain obvious simplifications as before, it is found that 

(2.64) 

The energy equation in Crocco variables in terms of the enthalpy h can be 
easily obtained from equation (2.64) by substituting equation (1.94) for H and 
bearing in mind that a u/a [ = 0; the result is 

(2. 65) 
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The equations (2.62), (2.63), (2.64) (or (2.65) ), together with the equation 
of state (2.40) represent the system of turbulent boundary layer equations in 
Crocco variables. This system, like the system of equations (2.44), (2.52),
(2.54) (or 2 .55) )  assumes that the boundary layer is divided into two zones, the 
turbulent core and the laminar sublayer. In using these equations within the 
laminar sublayer it is necessary to omit the terms containing the turbulent 
transport coefficients and their dimensionless combinations ( E ,  A T, 91T, PrT, 
LeT, ScT); similarly, in the turbulent core it is necessary to omit the terms 
containing the molecular transport coefficients and their dimensionless combina
tions ( p ,  A , , F i ,  Pry Lei, Sci). 

When flow in the boundary layer on an axisymmetric body of revolution is 
considered, the continuity equation can be written in the form 

a a
- (ru,pu)+ - ( T u p )  =. 0, (2.66) 
ax aY 

and the term (' E )  	1 must be added to the left hand part of the equa- /El-W d t  
tion of motion in Crocco variables (2.62),  as a result of which it assumes the 
form 

Here r w = r w(x)= r
W 

( t )is the radius of transverse curvature of the body. These 
equations (2..66) and (2.67) are valid only if the boundary layer thiclmess 6 is 
considerably smaller than rw, i. e., if 6 << rw. This condition is not satisfied 
in the downstream part of a long axisymmetric body o r  in a long channel. A l l  the 
other turbulent boundary layer equations for the case of an axisymmetric body 
are  the same as  those for a flat boundary layer. 

8. The semiempirical theory of turbulence. Reynolds' analogy. 

The system of turbulent boundary layer equations obtained in the preceding 
section is not a closed system, just like the initial system (2 .36)  - (2.401, since 
the number of unknown exceeds the number of equations. It is h o w n  that in in
vestigations of the turbulent motion of incompressible, homogeneous and iso
thermal liquids, the semiempirical theory of turbulence is used to close the 
system. A l l  modern semiempirical theories of turbulence in incompressible 
fluids are based on a series of assumptions which are contained in the hypothesis 
which is usually given the name "the hypothesis of the localness of the mechanism 
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of turbulent transport" [14].The most important of these assumptions is the 
assumption that the mechanism of turbulent momentum transport is completely 
specified if the local values of the derivative of the averaged velocity with 
respect to the coordinate perpendicular to the direction of flow and the physical 
properties of the fluid are given. The hypothesis of localness does not take into 
account the effects of processes occurring far from the point being considered. 
On the basis of the hypothesis of localness and dimensional considerations it is 
possible to obtain the equations of the semiempirical theory of Prandtl and von 
K&."n [XI. 

In Prandtl's theory it is assumed that the local change of the averaged 
velocity depends only on the first derivative of the velocity du/dy; dimensional 
considerations therefore lead to the need for introducing the additional concept 
of a "mixing length", without which it is impossible to set  up a relationship for 
the shear stress. By using dimensional arguments it can be shown that the only 
possible combination of the quantities p (the fluid density), 1(the mixing length) 
and du/dy (the velocity gradient) which expresses the shear stress T is 

(2.68) 

The quantitative expression for the relationship Z(y) must be determined from 
other considerations. 

In von Ka/rm6nfs theory the change in the averaged velocity is given in 
terms of the first two derivatives of the velocity, du/dy and d2u/dy2. Similar 
dimensional considerations lead to the conclusion that the only equation for 
von ~rmSinrsshear stress is 

(2.69) 

The application of the semiempirical theories to processes and turbulent 
heat and mass transfer is based on the so-called %eynoIds analogytf. According /6 7 
to this analogy it is assumed that the turbulent transport coefficients for momen
tum, heat and mass have the same values, This assumes that there is no effect 
of changes in heat content and concentration in the stream on the mechanism of 
turbulent mixing and is probably valid for not too large changes in heat content 
and concentration. The assumption that the coefficients of turbulent transport for 
momentum, heat and mass a re  the same is obviously equivalent to assuming that 
the turbulent analogs of the Prandtl and Schmidt numbers a re  equal to unity: 

Pr, =Sc, = 1. (2.70) 
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The Reynolds analogy can be represented quantitatively in the form 

(2.71) 


o r  

(2.72) 

In studying turbulent flows in which it is necessary to take into account the 
effects of compressibility, heat and mass transfer, chemical reactions, etc. , 
(all together o r  only some), the only possible procedure available up to now is 
the method of generalizing the semiempirical theories of turbulence for incom
pressible fluids to deal with these more complicated cases; usually the generaliza
tion is reduced to the direct utilization of the semiempirical formulas of Prandtl 
(2.68) and von lQhm&n(2.69). The forms of the Prandtl and von Kdrm6.n equations 
are  retained entirely except that the quantity p (the density) is regarded as a 
variable. A s  regards the value of the turbulence constant H. (it will be recalled 
that the expression 2 =').cy is often used for the mixing length) it may be noted 
that although there are certain experimental data indicating that the compressi
bility factor and heat transfer affect i ts  value, these data do not permit us to /6 8-draw any quantitative conclusions as to these effects*. For the constant ').c it is 
therefore usual to take the value for incompressible fluids (H.= 0 . 3 9  - 0.41). 

9. The integral momentum- _ - _and energy relationships
- _. 

The integral conditions for the conservation of momentum and energy are 
used in boundary layer theory for setting up approximate methods (or so-called 
integral methods) for  calculating friction and heat transfer. In order to obtain 
these, boundary conditions are  set up on the surface of the solid body and the 
outer edge of the boundary layer for the velocity, total enthalpy and concentra
tion of the components; in order to be a s  general a s  possible, the surface of the 
solid body will be regarded as being permeable. These conditions have the form 

(2.73) 

The second condition on the wall, v = vw, is the condition expressing the perme
ability of the wall; if the wall is impermeable, vw = 0. The last three conditions 

.1_._ . A  . ... .. _ _ _ .  . . - . . .  - ~ .- . .. 

* This problem is discussed in detail in Chapter III. 
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characterize a smooth junction of the profiles for the velocity, total enthalpy and 
concentration at the boundary between the boundary layer and the external stream. 

The external stream will be regarded as isentropic, and consequently the 
velocity at the outer boundary Ue will be related to the pressure on the surface 
of the body by means of Bernoulli's equation: 

(2.74) 

The boundary layer equations in terms of the variables x and y are  used in 
deriving the integral relationships, The continuity equation (2.66) is rewritten in 
the form 

(2.75) 

where LJ = 0 for plane flow and v = 1 for &symmetric flow in the boundary 
layer. 

The integral momentum relationship. By using equations (2.74) and (2.75),  
the equation of motion (2.52) is rewritten in the form 

By multiplying both sides of equation (2.75) by Ue' it is found that 

By subtracting from this equation both parts of the previous equation, it is pos
sible to arrive at the expression 

By integrating this expression across the boundary layer with respect to 

-/2;9 

y from zero to infinity, and introducing into the discussion the integral thicknesses: 
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which is the momentum loss thickness, and 

(2.76) 

(2.77) 

which is the displacement thickness, and by using the boundary condition (2.73) 
for the velocity, it is found that 

-no 

(2.78) 

where 

is the wall shear stress. 

By carrying out the differentiation in (2.78) and noting that 

(2.79) 

the following integral momentum relationship is obtained after dividing both sides 
of equation (2.78) by p,Ui: 

(2.80) 

Here 

6'H' r-
6" (2.81) 

is the boundary layer form parameter; Me = Ue/ae is the Mach number; ae is the 
velocity of sound at the outer edge of the boundary layer. The primes denote 
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derivatives with respect to the coordinate x, It should be noted that equation 
(2.79) is not difficult to obtain from Bernoulli's equation (2.74) i f  the latter is 
written in the form 

If the definition of the velocity of sound 

(2.82) 

is recalled, equation (2.79) follows directly. 

The integral momentum relationship can be written in several other forms, m-bearing in mind that 

and so 

A s  a result, it is found that 

Here  

is the local coefficient of friction, and 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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is the relative mass rate of supply of material through the wall surface. 

The integral energy relationship. By means of equation (2.75) the energy 
equation (2.56r cah-bG transformed to the form: 

By noting that He = const, the continuity equation can be written in the form -J72 

a a i dr;-(puH,)+ ,,(puH,)S puH,--rb d* 
= 0.a l  

By subtracting the previous equation from this one and carrying out the integra
tion across the boundary layer from y = 0 to y = (I),using boundary condition 
(2.73),  it is found that 

- 5  m 
p u ( l z e - ~ ~ ) d y - p P L U V U , ( H e - H w ) +d 

d z  
0 

(2.87) 

where 

(2.88) 

is the heat flux from the gas to the wall. 

By introducing the integral energy loss th icbess  

(2.89) 

and making use of equation (2.79),  the integral energy relationship is obtained in 
the following form 
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(2 .90)  

By now introducing the dimensionless heat transfer coefficient (orStanton 
number) 

Q I" ._ _ _  (2.91)c,, .--
P/JC (fir- law) ' 

where 

(2.92) 

is the equilibrium enthalpy of the surface along which flow occurs without transfer 
of heat, and r is a recovery coefficient characterizing the nonadiabatic nature of 
the flow in the boundary layer, and by making use of equations (2.83) and (2.86), 
the integral energy relationship (2.90) can be converted to the following form 

(2.93) 
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CHAPTER III. 

THE TURBULENT BOUNDARY LAYER IN A HOMOGENEOUS ..- . 1 --. .. 
- .__ - - - . .. - __ . - .-.. - . . - - . . .GAS-STREAM'AT.SUTERSONIC.VE.LOCITIES 

10. Introduction 

The present chapter will  deal with the theoretical and experimental results 
obtained from studies of the behavior of turbulent boundary layers on imper
meable surfaces in homogeneous gas streams moving at supersouic velocities. 
The fact that the gas stream is homogeneous implies, essentially, that there 
are  no chemical reactions in the stream. Most of the results presented refer 
to  flows in which the specific heat capacity of the gas can be regarded as  a 
constant quantity. 

The problem of calculating the turbulent boundary layer on bodies of arbi
t rary shape at supersonic velocities is still far  from being completely solved at 
present. It is well known that the problems which arise in studying flows with 
large positive pressure gradients in calculating the separation of the turbulent 
boundary layer have not yet been satisfactorily solved even in the case of incom
pressible fluid flow. The existing procedures for calculating turbulent boundary 
layers at supersonic velocities make it possible to determine friction factors 
and heat transfer coefficients only for bodies of relatively simple shape (plate, 
cone, in the neighborhood of the stagnation point of a blunt body, etc.). The 
most detailed results (experimental and theoretical) have been obtained for 
studies of flow along f la t  plates in the stream. 

The literature on the calculation of friction factors for smooth flat plates 
is quite extensive, with several dozen references. Depending on the various 
assumptions made by the various workers, it is possible to divide the work into 
three historical routes leading to the present. 

The first route is based on generalizing the formulas of the semi-empirical
theory of turbulence developed by Prandtl and von K5rm6n (equations (2.68) and 
(2.69) ), which were obtained originally for incompressible fluids, to the case of 
gas flows with large velocities. The methods in this group can be characterized 
as those making use of logarithmic velocity profiles. 

-/74 

n75 
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The use of power-law velocity is 
characteristic of the methods in the second 
group. The first and second groups of 
methods are  natural developments of the 
traditional methods of the theory of turbu
lent boundary layers in incompressible 
fluids. 

Finally, the third group can be termed 
empirical methods. The main feature of the 
methods in this group is the use of formulas 
which in form are the same as the formulas 
for incompressible fluids, but with the 
parameters evaluated at some specially
selected "defining" temperature, Figure 2. 

There are  also other methods which 
occupy positions intermediate between 
these groups. 

In most of the papers in the first group the assumption is made that the 
frictional shear stress T is constant across the boundary layer and is equal to 
the value at the wall: 

T ==C O I l S t  = 
ui ' (3.1) 

Actually, experiments carried out by Klebanoff [IS] in the incompressible tur- /76
bulent boundary layer on a flat plate (the circles in Fig. 2 represent the experi
mental points obtained by Klebanoff) showed that the dependence of the turbulent 
shear stress on the transverse coordinate was approximately linear (the straight 
line in Fig. 2) and could be approximated by the expression 

where 6 is the thickness of the boundary layer. 

Nevertheless, the approximation (3.1) does not introduce an appreciable 
e r ror  compared with (3.2) in calculating the integral characteristics of the 
boundary layer (friction, displacement thickness, momentum loss thickness, 
etc.). This fact becomes intelligible if the momentum loss thickness 6 ** 
given by equation (2.76). By rearranging this equation to the form 

(3.3) 
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it can be seen that in this expression the quantity which depends on the shear 
stress distribution across the boundary layer is the derivative du/dy, (this is 
clear from the equations of Prandtl (2.68) and von Kgrmhn (2.69). The greatest 
e r ror  caused by introducing into it the approximation (3.1) will obviously occur 
close to the outer edge of the boundary layer, where according to (3.1) T = Tw, 

while actually T - 0 as y -OD. However, in this case, the derivative (du/dy)-* 
is multiplied by the small quantity (1 - u/Ue) , which is small because u - Ue 

as y - 00, and which leads in the final analysis to a small e r ro r  in  the value of 
6 **. At the same time, as will be shown below, the friction coefficient at the 

This fact also makes the e r ror  introduced intowall is given by cf 
- ( ~ I I S ~ ) ~ .  


the calculation by the approximation (3.1) quite small. 


The following simple arguments can also be presented as a basis for the 177 
assumption (3.1).  By using the usual logarithmic velocity profile E171 

_zf_ =2.5 In (%)-+5.5,  u. = (F)‘la, 
0. 

(3.4) 

it is not difficult to obtain from equation (3.2) the following relationship between 
the shear stress in the boundary layer and the velocity: 

(3.5) 

The results of calculations by equation (3.5) 
for three values of the friction parameter
Lo = 20, 30, 40 are  shown in Fig. 3.  For 
example, it can be seen from Fig. 3 that for 
a value of the parameter to= 30 (which
corresponds to a Reynolds number of -lo7),
the shear stress fall in the range 
0.9 5 r/Tw 5 1over the range of velocities -
0 5 u 5 0.8,  which confirms that it is valid 
to use (3.1) in practical calculations. 

When (3.1) is used, the following ex
pressions a re  obtained from the Prandtl 

Figure 3. formula (2.68) and the von K & r m h  formula 
for the velocity profiles 
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Here 

C , ,  C2, C3 are  integration constants; x is an empirical turbulence constant, 
the value of which is usually assumed to be the same as the value in an incom
pressible fluid, i. e. ,  x. = 0 . 3 9  - 0.41. 

The relationships (3.6) and (3.7) lead to the following equations, respec
tively, for the momentum loss thickness (2.76) : 

(3. 9) 

(3.10) 

The differences among the papers in the first group of approaches is 
usually found in the assumptions made relative to the integration constants 
C,, C2, o r  in the expression for p/pw, or  in the methods of evaluating the 
integrals in the expressions (3 .9)  and (3.10) for the momentum loss thickness*. 

One of the papers which contributed originally to the wide use of the semi-
empirical approach in the first group of approaches is the paper by F. I. Frankl 
and V. V. Vo'ishel [19]. In this paper the authors use the approach of directly 
generalizing the von K&rm&nmethod [20]. Unfortunately, the power approxima
tions used by Frankl and VoYshel made it possible to carry out evaluations 

. ... . _ - . _ _ _ ~ _ _ - _ _ _ _ _ e  ~ . .  .,i_.._ . . _ _ _ _ . _ - . . _ I _ _ . _ I _  -

*A detailed analysis of the various methods for calculating turbulent 
boundary layers on flat plates is contained in [181. 
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only up to Mach numbers lightly greater than one. 

Going to larger Mach numbers would obviously require either even more 
complicated computational procedures than the already complicated procedure 
used by the authors o r  the direct use of numerical procedures. 

Af t e r  almost 25 years, this same method of generalizing von K6rm6nrs 
equation (2.69) to the case of supersonic velocities was used by Wilson [21], 
who considered flow along a thermally insulated plate. 

Almost simultaneously with Wilson, van Driest E121 considered the more 
general problem of the drag of a plate in a gas stream in the presence of heat 
transfer, but in this case Prandtl's formula (2.68) was used. Later, van Driest 
[22] obtained a friction formula on the basis of von K&mdn's formula (2.69). 

The method developed by V. M. Ievlev [231 has also been widely used in 
practice. 

Further developments in the semiempirical method were made in the 
papers by I. P. Ginzburg and A. A. Shemets [241, L. E. Kalikhman [25], S. S. 
Kutateladze and A. I. Leont'ev [26], L. G. Lohyanskii and Yu. V. Lapin [27], /80-L. M. Zysina-Molozhen and I. N. Soskova [281 and other authors. 

On turning briefly to the methods of calculating turbulent boundary layers
in the second group, it will be recalled that the methods for calculating iso
thermal turbulent boundary layers in incompressible fluids using a power-law
velocity profile are  based on the experimental fact, which was first observed 
by Blasius, that during turbulent flow in a straight circular tube the change in 
velocity across the tube as a function of the distance from the wall and the shear 
stress at the wall (as a function of the Reynolds number calculated from the 
axial velocity Ua and the tube radius ro)obeys the following power relationship: 

(3.11) 

The use of a power-law velocity profile for the conditions of the external 
flow of an incompressible fluid makes it possible to obtain a power relationship 
between the friction factor and the Reynolds number evaluated from the velocity 
of the approaching stream and the length of the plate. The value of the exponent
for the velocity profile expression 

(3.12) 

6 1  



where 6 is the boundary layer thickness, is usually selected to ensure agreement 
with the experimental data. It is therefore to be expected that the exponent will -

vary with the Reynolds number over quite a wide range: 6 < n < 13. However, 
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this fact is not particularly important, since in the absence of effects of the other 

parameters on the exponent, it is always possible to select the most satisfactory 

value of the exponent over any required range of Reynolds numbers. 


It is quite otherwise in the flow of a compressible gas. In this case, the 
Mach number and the temperature factor affect the value of the exponent as  well 
as the Reynolds number, which greatly complicates the selection of the correct 
value of the exponent. This leads to the fact that some methods of calculating 
boundary layers in compressible gases which a re  based on power-law velocity 
profiles [291 appear to be satisfactory only over relatively short ranges of the 
various parameters (Rex' Me, T S e L  

A notewGrthy example of the methods in the second group is the "effective 
length" method of V. S. Avduevskii [30]. Power-law distributions of the velocity 
and enthalpy in the boundary layer form the basis of this method; these distribu
tions are  described in therms of Dorodnitsjh variables as well as by experimen
tally determined relationships for skin friction and heat transfer on a flat plate. 
The calculation of friction and heat transfer in a turbulent boundary layer of a 
compressible gas with moderate longitudinal pressure drops can ultimately be 
reduced to calculations by the flat plate formula, except that in place of the actual 
coordinates giving the position of a point on the surface of the body, it is neces
sary to use some "effective length" determined from the integral conditions. 

The essence of the third, o r  so-called empirical, approach to the problem 
of turbulent boundary layers in a compressible gas consists of attempts to gen
eralize known relationships previously obtained for the flow of incompressible /82
fluids for the case of flowing compressible gases by referring the physical prop
erties of the gas to some characteristic temperature selected in some specified 
way. Thus, as early as at the 1935 Volta congress in Rome, von K6rm6n [31]
proposed a formula for the friction drag on a thermally insulated plate in a com
pressible gas which was without theoretical basis, but which was obtained from 
simplifying assumptions that it would be possible to use at large velocities the 
same formulas as at small velocities as  long as the physical properties were 
determined at the temperature of the wall. This formula for the average friction 
factor is 

(3. 13) 

Comparison of von K B r m h l s  formula with experimental results showed that the 
use of the wall temperature as the defining temperature in the boundary layer 
leads to an overestimate of the effects of compressibility. 

Up to the present various authors have proposed a large number of empir
ical formulas for the "defining" temperature. Some of these are  
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Tu
Tdet-= 0.42 +0,032M: + 0.58 - for Me<5.5 3));Te 'e 

Tdet = 0.70 -10,023 M: + 0.58 5 for Me>5.5Te 'e 

It should be noted that the last two formulas for the defining temperature /83 
were obtained as a result of analyzing numerical solutions of the laminar 
boundary layer equations. Although these expressions are  used for calculating 
friction in turbulent boundary layers, this fact must nevertheless be always
remembered. Calculations using these formulas give lowered friction coefficients. 

A method of calculation which differs from the others, but which is essen
tially an empirical method, has been developed by Spalding and Chi 1181. A com
parison of the various methods of calculating friction in the turbulent boundary 
layer with experimental data then in existence was carried out by Spalding and 
Chi, and showed that the most exact methods of calculation are the method of 
Wilson and van Driest [12, 21, 221 (based on von KBrmBn's formula), the method 
of Kutateladze and Leont'ev [26], and the method of Spalding and Chi. 

Based on this, a discussion is given in section 12 of the semiempirical 
methods of calculation for thermally insulated plates with reference to the re
sults of Wilson, and for flow with heat transfer with reference to the results of 
van Driest. In addition, the method of Spalding and Chi is discussed briefly in 
section 13. The results of the semiempirical methods are used in the latter 
section. The simplicity and high degree of accuracy of this method make it con
venient for carrying out engineering calculations. 

11. Experimental investigations of turbulent-boundary-layers in supersonic- -- .-.__ . - 
-_ streams- .@TZGi%ST6locity - -profiles). 

Of the many problems of experimental aerodynamics, one of the most 
important and widely investigated over many years is the problem of determining 
the turbulent skin friction. Without going into the results of experimental inves
tigations of the characteristics of turbulent boundary layers in incompressible
fluids, we will consider here the most important and interesting experimental /84
results from studies of velocity profiles and skin friction in turbulent boundary
layers in compressible gases both on thermally insulated surfaces and on sur
face which exchange heat with the gas stream. Most of the results discussed 
below have been obtained since 1950. It should be noted that the experimental 
data existing at present are  fa r  from complete, particularly as  regards mea
sured information on velocity profiles in the boundary layer. 
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Of the papers dealing with investi
gations of the characteristics of boundary 
layers on heat insulated surfaces, the 
work of Wilson, Chapman and Kester, 
Cowles, Korkegi, Matting et al., and 
Moore and Harkness will be considered. 
In the case of investigations on surfaces 
with heat transfer, the work of Lobb et 
al. , Hill, Sommer and Short, Winkler, 
and Kozlov will be considered. The re
sults of other investigators wi l l  be intro
duced in the various graphs. 

Experimental investigations on thermally 
insulated surfaces. 

The experiments of Wilson [21]. 
Velocity profiles were measured with a 
Pitot tube at several cross sections in 
the boundary layer on a thermally insu
lated flat plate. The Mach and Reynolds 
numbers in the experiments varied over 
the following ranges 

o 	 o - Exp. of R.Wilson 
Me=1.999,cfw=0.0026 

u/u, 

Figure 4. 

1.570 <Me <2,186; 
2.2 <Re, - < 19. 

By way of an example, Fig. 4 shows the results for the velocity profiles 
at M = 1.999 (the circles denote the experimental points; the solid lines will be e 
discussed later in section 12). From the velocity profiles the momentum loss 
thicknesses 6 ** were evaluated, and then the mean friction coefficients were 
evaluated (see equations (2.76) and (3.64) ), The values of the mean friction 
coefficients determined in this way are shown in Fig. 5. 

- and Kester [35]. Measurements of the mean /&The experiments of Chapman---_ 
friction coefficient cF were carried out on the surface of a long cylindrical body 
of rotation at subsonic and supersonic velocities of the stream for the following 
ranges of the Mach and Reynolds numbers: 45 Re

X 
5 32, 0.51 5 Me 9 

5 3.60. The surface friction forces were determined directly by tests on two 
models (shown diagrammatically in Fig. 6). In the experiments measurements 
were made of the difference between the total drag and the base resistance for 
each cone-cylinder and cone model: (Qi - mi)and (QZ- QD.,,). The difference 
between these quantities gives the value of the frictional force acting on the 
cylindrical surface : 
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Figure 5. 

A: Wire turbulence trigger 

D: Second model 

Figure 6. 

Experiments of R. Wilson 

Theory (eq. (3.91) 

Me = 0, eq. (3.67) 


\ 

The results are  shown in Table 1. The value of L e  mean fr,Aion coefficient 
for the incompressible fluid ( c ~ ~ ) ~ ~ ,to which the friction coefficients measured 
at various Mach numbers are  referred, was determined experimentally. In the 
lower line of the table the same coefficients are  referred to the mean friction 
coefficient cFo calculated by von K Q r m h l s  formula, equation (3.59). 
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TABLE 1 


Me 0.51 0.81 1.99 2.49 2.95 3.36 3.60 

C ~ / ( C ~ o )  0.985 0.929 0.746 0.671 0.623 0.578 0.551exp 

‘F / C ~ o  
0.994 0.924 0.757 0.672 0.630 0.571 0,552 

The dependence of the experimental values of the friction coefficient c
F 

on the Reynolds number Rex at various values of the Mach number M is givene 
in Fig. 7. The values of the friction coefficient cFo at Me = 0 were obtained 
from von K h - ” ’ s  formula, ecpation (3.59). A s  can be seen from Fig, 7, the 
curves corresponding to various values of the Mach number Me a re  equidistant 
from the curve for Me = 0 ,  which indicates that the ratio cF/cFo does not de

pend on the Reynolds number Rex over the range of Rex investigated. The slight 
degree of scatter of the experimental data at a given value of Me was caused by 
the use of cylinders of various lengths (cylinders with ratios of length to diam
eter of l/d = 8, 13 and 23 were used in the experiments). 

Figure 7. 

Coles’ experiments [36j. The values of the local and mean skin friction__ __ 
were determined in these experiments. The local friction was measured experi
mentally in a direct manner using a fTfloatingf7element set in the surface of the 
plate which was used in the working section of a supersonic wind tunnel, The 
mean friction was determined from the momentum loss thickness 6** (equation
2.76). In these experiments the Mach number varied from Me = 2 to Me = 4.5, 
while the Reynolds number varied from 3 - l o 6  to 9 - lo6.  The experimental re
sults are collected in Table 2. 
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TABLE 2 

Me 2.57 2.58 3.70 3.70 4.51 4.55 4-50 4.54 

uex-. 4.84 8.32 3.54 7.25 3.52 6.83 3.37 6.91 
Ve 

C f .  103 1.81 1.66 1.62 1.38 1.48 1.22 1.55 1.26 

Cf iCf0 0.705 0.700 0.595 0.570 0.530 0.500 0.535 0.495 

C ~ / c ~ o  0.715 0.710 0.635 0.610 0.590 0.560 0.600 0.560 

Korkegi's experiments [37]. A s  in the work of Coles, the local friction 
on a flat plate was measured by means of a Woating" element. Throughout the 
experiments the Mach number was held constant (Me = 5.8), while the Reynolds 
number formed from the parameters at the outer edge of the boundary layer and 
the distance from the "floating" element to the leading edge of the plate varied 
from lo6to 4 lo6. Velocity and temperature profiles were measured in addition 
to the friction; from these the integral boundary layer thicknesses 6* and 6** 
were calculated, as well as the parameter H* = 6*/6**.  The results of the 
experiments are shown in Table 3. 

TABLE 3 

Me Re** 6**/6 6 */6 H *  Cf' 103 Cf/cfoRR Cf/cfo 
5.787 2477 0.0375 0.529 14.10 1.316 0.403 0.467 
5.770 2780 0.0361 0.519 14.38 1.275 0.400 0.463 
5.792 3429 0.0357 0.561 15.68 1.223 0.400 0.463 
5.805 404 0.0385 0.561 15.79 1.179 0.397 0.462 

In the last column but one of Table 3 the ratio cf/c f o  is evaluated for a /89 


constant value of Re**, i.e., cf o  was evaluated at the same value of &**at 
which cf was determined. The ratio c

f
/c f o  in the last column of the table was 

evaluated for  

Re, = const (5Q Re, - I O 6  Q 6). 

The. . . .experiments of Matting, Chapman,. Nyholm.and Thomas [38]. The 
work by'the-se four authors is-%I extensiye and detailed experimental investiga
tion of the turbulent boundary layer on a thermally insulated surface in the 
absence of a longitudinal pressure gradient. A s  a result of the experiments, data 
were obtained on the local friction and velocity profiles over a range of Mach 
numbers from 0.2 to 9.9 and of Reynolds numbers from 2.lo6 to 100,106. A i r  
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was used as the working medium for 0 .2  5 Me 5 4.2, while helium was used 

for 4.2 5 Me 5 9.9. Since the adiabatic exponent (the ratio of the specific heat 

capacities at constant pressure and at constant volume) y = c /c
P V  

is appreciably 
different in the cases of air and helium (yair = 1.4, YHe = 1.66) the parameter 
( Y - 1)M2 was used as a similarity parameter. In this case the experimentale 
results obtained in a helium stream at some Mach number (Me)He will be 
equivalent to results obtained in an air stream at 

The validity of this relationship was confirmed experimentally. In particular, 
Fig. 8 shows velocity profiles in air (Me = 4.2) and in helium (Me = 3.25) for 
the same value of the Reynolds number (Re

X 
= 6.2 lo6) on the upper figure and 

Rex = 35 lo6on the lower figure. The agreement of the velocity profiles mea
sured in the different gases appears to the very good. 

U,, ftlsec; 6 

1L

ec 6 * * ,  inches; 

d 074 
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The results of velocity measurements in the boundary layer at various /91
Mach numbers (Me)air are shown in Fig. 9. This graph is plotted in terms of 
the universal parameters cp and 77 (see equation (3.8) ). Figure 9 shows that in 
the turbulent core the Mach number has an insignificant effect on the shape of 
the universal profile, which as  usual is well described by a logarithmic formula. 
A s  the wall is approached (in the laminar sublayer) there is a large scatter of 
the experimental points, which fall above the curve cp = 7. It is the author's 
opinion that the measurements near the wall a re  unreliable. An evaluation of 
the laminar sublayer thickness from the experimental data showed that this 
thickness increases with increase of the Mach number Me' and for ( M e ) ~ r= 9.9 
it reaches 10%of the total boundary layer thichess .  

Figure 9. 

The local surface friction was also measured in the experiments using a 
floating element as well as the velocity profiles. The results of these measure
ments are  shown in Figs. 10 and 11. A s  can be seen in Fig. 11the Reynolds 
number has no effect on the ratio cf/cfo over the investigated range of this num
ber. In Figs. 10 and 11the "flags" denote the points obtained experimentally at 
small Reynolds numbers (Re /ReL) < 0.61), where L is the length of the plate. 
There are  difficulties involved in obtaining sufficiently accurate friction deter
minations at these points, due to the incomplete development of the turbulent 
flow at (Rex/ReL) < 0.6. 

The experiments of Moore and Harkness [39]. This work contains the 
results of local friction and velocity profile measurements on a thermally insu
lated surface at a Mach number Me = 2.8. The distinguishing feature of this 
investigation is that it includes the zone of very high Reynolds numbers up to 
Rex = 1.41 lo9. The local friction was measured by means of a floa�ing ele
ment. The results of friction measurements on the wall of a supersonic diffuser 
of a wind tunnel a r e  shown in Table 4. 
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Figure 10. 


7 

2c 

cro 

6 


5 


4 


3 


'&5 2 3 4 6 8 IO 

Re, 

Figure 11. 


70 




-- 

Te ? 6 **, 
Me "K mm 

2.831 298 4.86 
2.843 292 4.61 
2.865 295 5.01 
2.897 289 5.82 
2.787 316 6.79 
2.809 317 6.76 
2.828 314 7.04 
2.699 305 8.11 
2.693 300 8.31 

6 7  a, 
mm mm 

22.7 104.0 

21.4 116.9 

24.0 108.9 

28.1 114.6 

30.8 139.2 

31.1 144.2 

32.6 140.5 

34.7 153.5 

36.0 159.5 


Re** Rex 
10-5 10-3 

4.24 8.27 

3.26 6.11 

2.12 3.76 

1.82 3.18 

5.57 11.2 

4.46 8.73 

2.79 5.12 

7.02 14.1 

5.95 11.8 


TABLE 4 /& 

cf 

0.000900 

0.000953 

0.000958 

0.00 1020 

0.000849 

0.000874 

0.000946 

0.000862 

0.000891 


Experimental investigations in the presence of heat $ransfer between the gas and 
sol idurface;  

The experiments of Lobb, Winkler  and Persca. [40]: The work considered 
in the previous section was concerned mainly with idvestigations of skin friction 
on thermally insulated surfaces, and gave relatively little information on the 
characteristics of the turbulent boundary layer such as the velocity and tom
perature profiles, thickness of the laminar sublayer, etc. 

The paper by the three authors being considered here falls among the few 
papers in which all the characteristics of the turbulent boundary layer listed 
above were determined in addition to friction measurements. The investigations
of the boundary layer were carried out on the walls of a two-dimensional nozzle 
of a supersonic wind tunnel; only a small pressure gradient existed at the cross 
section investigated. The local friction was determined from the velocity gra
dient close to the wall, and also from the measured heat flux in the investigated /94 

cross section, using Reynolds' analogy. 

The results of the local friction measurements and determinations of the 
flow characteristics for which the measurements were carried out are shown in 
Table 5. 

TABLE 5 

Me 4.93 5.01 5.03 5.06 6.83 6.786.83 6.787.67 

(Tr-Tw)De 0 1.23 2.07 2.36 3.05 4.05 4.16 4.63 5.65 
Re ** 5350 6480 7950 7370 8550 8400 12640 7960 8130 
(cf/cfJRe** 0.372 0.3825 0,3416 0.3317 0.252 0.242 0,233 0,250 -
c f 0  103 1.11 1.10 0.907 0.930 0.646 0.656 0.590 0.690 
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The quantity cf o  was determined for 

the same values of Re** for which c
f 

was measured, using von KBrmgn's formula 

0,02932 -
CfO = 

log(2 Re**) +o , ~ w ]  * (3. 14) Tr 

The Reynolds number Re**, formed Figure 12. 

using the momentum loss th ichess ,  was 
selected as the characteristic Reynolds number as  a result of the difficulties 
arising in defining the origin of the boundary layer on the wind tunnel wall, 
which made it impossible to use the Reynolds number Rex formed using the 
length. The dependence of (cf/cfJ Re**on the temperature factor (Tr-T4De is 
shown in Figure 12. Here Tr is the stagnation temperature. A s  can be seen from 
the figure, the ratio (cf/cfo) Re,,,,depends only slightly on heat transfer. 

In this paper, particular interest was attached to measurements of the 
velocity profiles in boundary layers. 

Figure 13 shows the velocity profile for Me = 6 . 8  and two values of the 

heat transfer factor (the greatest and smallest values for the given value of Me). 

Distance, mm 
Y 

Figure 13. 
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In order to show the difference between the velocity profiles, the distance in mm 
is shown in two ranges on the abscissa. A s  can be seen in Fig. 13, the velocity 
profiles in the turbulent core differ very little as  the heat transfer factor changes, 
while in the laminar sublayer the steepness of the curve increases as heat trans
fer increases. 

The same velocity profiles, as well as the profiles for Me = 5 are given in 
Figs, 14 and 15 in terms of the universal variables ‘p and 7 ; these show a con
siderable displacement upwards of the curves in the turbulent core zone as the 
heat transfer-factor increases. 

25 
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Figure 14. Figure 15. 

For all values of the heat transfer factor the velocity profiles in the laminar 
sublayer are  described well by the equation ‘p = 7 , but the thickness of the sub-
layer, as shown by Figs. 14 and 15, increases as  the heat transfer factor increases. 
The value of the parameter qL,  which represents the thichess  of the laminar 
sublayer and plays an important part in the theory of turbulent boundary layers, 
appears to be the same as  the value for an incompressible fluid (qL = 11.9 = a) 
only in the absence of heat transfer (see the curve for Me = 5, (Tr - Tw)De = 0 

in Fig. 15). 
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Figure 16. 

The results of measurements of the laminar sublayer thickness and of the 
velocity at its edge a re  shown in Fig. 16. Although the scatter of points appears 
to be quite considerable (this is partly caused by the differences in Reynolds 
numbers) it is nevertheless possible to conclude that a s  the heat transfer inten
sity increases, the relative velocity at the edge of the laminar sublayer and the 
thiclmess of the sublayer both increase. From the same figure it can be seen 
that as  the Mach number increases from 5 to 6.8, the thickness of the laminar 
sublayer within the boundary layer increases by a factor of approximately 2. 

Hill's experiments [41] *. These experiments were carried out in a conical /@8
nozzle at a Mach number of 9.1 at the outlet. Velocity and temperature profiles 
in the boundary layers at various cross sections of the nozzle, using Pitot tubes 
and thermocouples. The conditions in the nozzle differed somewhat from the flow 
conditions on a flat plate since the walls of the nozzle were inclined with respect 
to its axis at an angle of 6", and there was a small negative longitudinal pressure 
gradient. 

Values of the local friction were calculated from the slopes of the velocity 
profiles close to the wall, using the formula T~ = ( y a u / a ~ ) ~ .The data on the 
skin friction measurements are summarized in Table 6 (where cf is the friction 
coefficient based on the parameters of the approaching stream). 

*A more detailed paper by the same author [42], which is not considered 
in the present paragraph, is also recommended to the reader. 
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Me T w n e  Re ** cf. 104 

8.99 7. 68 1245 7.899 
9.04 7.97 1607 8.910 
9.07 8.28 1908 8.505 
9.10 8.69 2287 8,000 
8.22 7.17 2081 9.240 
8.25 7.26 2498 9.102 
8.27 7.34 2885 8.695 
8.29 7.37 3202 8.202 
8.29 7.41 3451 7.709 

TABLE 6 

'Cf/CfJ ** 
0.197 

0.235 

0.234 

0.227 

0.257 

0.265 

0.259 

0.247 

0.239 


In the last column of Table 6 the friction coefficient cf is referred to  the 
friction factor cf o  calculated by von K B r m 6 . n ' ~formula (3.14)for the values of 
the Reynolds number -**given in the table. 

In comparing the experimental data on friction with the theoretical calcu- /Elations, it must be remembered that according to the evaluation carried out by 
Hill, the measured values of the friction coefficient may be 20% larger than the 
value of the friction coefficient on a flat plate as a result of the effects of the 
negative pressure gradient. 

Figure 17. 
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The results of velocity profile measurements at various cross sections of 
the boundary layer in the nozzle are shown in Fig. 17, which is plotted in terms 
of the universal coordinates and q. The figure shows that in the laminar 
sublayer (lg r ]  < 1.1)the experimental points fall around the curve 4p = q 
(solid curve). In the turbulent core, the experimental points fall practically 
along straight lines which are displaced upwards from the dashed lines, which 

are drawn according to equation (3.4) for the velocity profiles in incompressible 

fluids (an explanation of the solid lines in the turbulent core region will be given 

in Section 12). Of these velocity profiles, the profile at Me = 8.99 differs 


appreciably from the profiles for the other Mach numbers. The reason for this, 

as noted by Hill, is that this cross section occurred in a region of insufficiently 

developed turbulence. Of the other features in the velocity profiles, it is neces- /100

sary to point out the thickening of the laminar sublayer, According to Hill 's data, 

at Me = 9 the laminar sublayer occupies about 15% of the total boundary layer 


thiclmess. 

-~ [43]. Drag was determined on anThe experiments of Sommer and Short ._ 

aero-b-apparatus fGo-m measurements of the head resistance of hollow 
cylindrical models which were fired through a supersonic wind tunnel. Mach 
numbers of M = 2.8 and 3.9 were obtained by firing through stationary air,e 
while Me = 7.2 was reached by firing against an air stream moving at Me = 2. 

M = 5.6 was obtained on models with profiled leading edges, which reduced 
th8 Mach number from Me = 7 to Me = 5.6 at the outer edge of the boundary 
layer. The head resistance was computed from the retardation of the model, 
which was determined on the basis of taking chronographs and shadow photo
graphs. 

Turbulence generators in the form of threads cut into the outer and inner 
surfaces of the model were used to set up the turbulent boundary layer. In order 
to take into account the thickening of the boundary layer and the additional drag 
caused by the turbulence-generating threads, the so-called "effective" Reynolds 
number (ReeB in Table 7) was calculated, and the coefficient of friction cf o  cor

responding to this for an incompressible fluid was found. Without going into the 
details of calculating Reeff, it need only be said that this Reynolds number is 
formed from the length of the turbulent boundary layer required for the forma
tion of a momentum loss thickness which would have occurred if the additional 
resistance caused by the turbulence generators had been due only to friction in 
the boundary layer. 

The results of friction coefficient measurements are  shown in Table 7. 
The values of the friction coefficients in the incompressible fluid were deter
mined from von K ~ r m 6 . n ' ~formula, equation (3.59). 
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Me T w n e  Reeff Rec' 10-6 Cf 
2.81 1.03 62.3 3.00 0.00284 
3.82 1.05 84.0 4.07 0.00287 
5.63 1.29 72.0 4.71 0.00170 
6.90 1.60 82.0 4.06-6.09 0.00125 
7.00 1.75 123.5 6.06-9.92 0.00115 
3.78 1.05 84.0 4.92 0.00204 
3.67 1.05 78.5 3.78 0.00240 

~ . .-

TABZE 7 * 
cf'cf 0 

0.867 
0.730 
0.562 

0.401-0.451 
0.395-0.446 

0.694 
0.724 

*In this table, Rec is the Reynolds number formed with respect to the 
parameters of the approaching stream and the length measured from the point of 
formation of the turbulent boundary layer. 

Winkler's experiments [44]. In this work, studies were made of the turbu-= 

lent boundary'laye5Tharacteristicson a cooled flat plate at Me = 5.2 and three 
values of the temperature factor. Measurements in the boundary layer were made 
with a total pressure probe (Pitot tube) and a thermocouple. The wall shear stress 
was determined by two parallel methods: from the slope of the velocity profile at 
the wall, 'rW= 1-1, ( 8 u/a Y ) ~ ,and from measurements of the value of the heat 
flux grom the gas to the wall, using Colbum's proposed relationship between 
friction and heat transfer, cf = 2chPr2l3, where ch is the heat transfer coefficient 
(the so-called generalized Reynolds analogy). 

The results of friction measurements by the two methods a re  shown in 
Table 8 (here TZ is the stagnation temperature; cf is the friction coefficient 
formed from the parameters of the approaching stream; Rex is the Reynolds 

number formed from the parameters of the approaching stream). A s  can be seen 

from this table, the values obtained by the two different methods agree in most /10-2 

cases to within f 4%. A t  the same time, it must be noted that Winkler's data 

on how the temperature factor affects friction contradict the calculated recsults 

and experimental data of other authors. 


The results of velocity profile measurements in the logarithmic layer at 
M = 5.2 and three values of the temperature factor are  shown in Fig. 18. Ane 
approximate evaluation of the laminar sublayer thickness from the data of this 
figure shows that the laminar sublayer occupies about 9% of the total boundary
layer. 

The experiments of L. V. Kozlov [45]. Using a floating element tech
nique. .measurements we-re made of the local friction on a flat d a t e  around which 
a .&personic stream flow in  the presence of intensive heat tradsfer between the 
stream and the wall. In the experiments, the Mach number of the approaching /lo3 
stream was 2.9, while the Reynolds number varied over the range 
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Cf/cfo cf/cf 0 Me
(1) (2) 

0.487 0.494 5.20 
-0.484 5.14 

0.508 0.478 5.20 
0.493 0.492 5.26 
0.492 0.480 5.29 
0.432 0.436 4.98 
0.530 - 5.18 
0.437 0.407 5.20 
0.414 0.421 5.24 
- 0.389 5.24 

0.447 0.381 5.17 
0.434 0.379 5.16 

-0.442 5.10 
0.422 0.436 5.11 

-0.420 5.20 
0.375 0.383 5.12 

1.5 5 Rex - 5 2.5. 

Tw/CTe* Rex- Re% 

0.801 2.72 2090 
0.875 3.36 2936 
0.840 4..07 3173 
0.845 5.04 3880 
0.845 5.94 4300 
0.757 2.29 1900 
0.744 2.58 1782 
0.753 3.81 2960 
0.773 4.55 3455 
0.765 5.11 3790 
0.613 2.01 1055 
0.586 2.57 1652 
0.578 2.73 1735 
0.565 3.27 2488 
0.589 3.57 2482 
0.605 4.22 3256 

TABLE 8 /lo2
_I_ 

6 " 5  Q*, cf. 1 0 4  c f .  1 0 4  

mm mm (1) (2) 
0.166 1.66 14.65 14.87 
0.189 1.57 13.89 -
0.228 2.46 14.32 13.48 
0.284 2.86 13.46 13.43 
0.332 4.00 13.08 12.76 
0.179 1.96 13.35 13.48 -

0.330 

0.149 1.55 16.06 
0.227 2.51 12.48 11.65 
0,280 3.22 11.51 11.70 

-3.88 10.63 
0.114 1.22 14.07 15.47 
0.188 2.05 13.23 13.35 
0.186 1.93 13.35 
0.281 2.84 12.36 12.79 
0.256 2.78 12.03 
0.343 3.74 10.54 10.75 

After an analysis of the data, the author recommended 
the use of the following empirical formulas for the friction coefficients: 

(3.15) 

where 

The author noted that the mean square deviation of the experimental points 
from the curve given by equation (3.15) was & 5 % over the investigated ranges 
of the Reynolds number and temperature factor. 

Some remarks on the results of experimental investigations of turbulent b o 4-
boundary layers at supersonic velocities. The results of measurements of the 
velocity profiles at various values of the Mach number of the approaching stream 
and of the temperature factor which have been presented in this section in Figs. 8, 
13-15 and 17 show that the velocity profiles in the laxninar sublayer are described 
satisfactorily by the linear equation cp = 17. 
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In the turbulent core the velocity profiles are logarithmic (Figs. 9, 17). 
In the case of thermally insulated surfaces, the slope of the profile (Fig. 9) is 
the same as for incompressible fluids. In the presence of heat transfer, the 
slope of the velocity profiles in this zone is larger than for the incompressible 
fluid (Fig. 17); however, it should be noted that in Hill's experiments in Fig, 17, 
the increase in the slope of the profile can be partly explained by the effect of 
the negative pressure gradient.). A s  can be seen from Figs. 14 and 15, an increase 
in the intensity of heat transfer between the gas and the wall can lead to a change 
in slope of the velocity profile (the deformation of the profile at the junction of 
the laminar sublayer and the turbulent core can be explained by the presence of 
the pressure gradient, since the experiments were carried out on the surface of 
a two-dimensional nozzle, ), 

A comparison of the velocity profiles at large Mach numbers (Fig. 17) and 
those in incompressible fluids (Fig. 19, in which the points represent the experi
mental data of Nikuradse [46]) shows that at large Mach numbers the transitional 
(buffer) zone between the laminar sublayer and the turbulent core is considerably 
reduced in size. In incompressible fluids, the transition zone begins at 17 = 5 
and ends at 17 = 30 - 50, while at large Mach numbers (for instance, in the ex
periments of Hill), the buffer zone disappears almost completely, and the transi
tion from the laminar sublayer to the turbulent core becomes quite sharp. This 
fact justifies the application of the two-zone Prandtl scheme to the theory of 
turbulent boundary layers at large supersonic velocities. 

Another important feature of the velocity profiles in supersonic streams is 
the increase in the thickness of the laminar sublayer as  the Mach number in
creases. Figure 20 illustrates the nature of the change of the relative thickness 
of the laminar sublayer as the Mach number increases at various values of the 
Reynolds number (the experimental data of Hill, Lobb, Winkler and Persch, and 
of E. U. Repik are  shown on this figure). A s  can be seen from the figure, in in
compressible fluids the thickness of the laminar sublayer is no more than 3%of 
the total layer thickness 6. A t  Mach = 9, 6L may become 30% or  more of the 

total boundary layer thickness, and the rate of increase of the relative thickness 
of the laminar sublayer with increase of the Mach number also increases. A de
crease of the Reynolds number Re** also leads to an increase in aL/6. 

Figure 2 1  shows the data of Lobb et al.,  Hill, and Monaghan [471 for the 
value of the universal coordinate 17 at the edge of the laminar sublayer, which 
is denoted by vL, A s  can be seen from Fig. 21, the experimental data existing 

-b o 6  

at present are  insufficient to quantitatively determine the effects of the various /lo7-
parameters. This circumstance largely explains why in most existing theories 
of turbulent boundary layers in compressible gases qL is assumed to have the 
same value as in an incompressible fluid, i. e . ,  VL = a! = 10.8 - 12.5*. 

*This problem will be considered in more detail in Section 13. 
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Figure 20. 

Figure 21. 

12. Semiempirical methods of calculating friction on flat ,plates [48]. 

Let us consider the flow of a supersonic gas stream around a smooth 
impermeable plate (Fig. 22). If the plate is placed at zero angle of attack 
(Fig. 22a) the velocity at the outer edge of the boundary layer will be constant 
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Figure 22. 

** and equal to the velocity of the approaching stream at infinity: Ue = Um . In 

the flow along a plate at some angle of attack (or along a wedge) there is an 

attached discontinuity on the lower surface and a radiating rarefaction wave on 

the top surface (Fig. 22b). In this case, the velocity at the outer edge of the 

boundary layer will also be constant and equal to the velocity behind the discon- /108

tinuity o r  radiating rarefaction, respectively. The values of the velocities after 

an attached oblique shock wave and a radiating (normal) rarefaction wave can be 

determined from well known gas-dynamic relationships [50]. 


In the case of two-dimensional flow with a constant velocity (Ue = const. , 
dU /d = 0) on an impermeable wall, which is being considered here, so that e x  
v

W 
= 0,  the integral momentum relationship (2.80) assumes the form 

(3.16) 


Here 6** is the momentum loss thickness given by equation (2.76). A s  before, 
the parameters at the outer edge of the boundary layer will be indicated by a 
subscript e’ bearing in mind that it is only in the special case of flow along a 

flat plate at zero angle of attack that these parameters a re  equal to the param
eters of the approaching stream at infinity. 

By introducing a Reynolds number formed from the momentum loss thick
ness, 

- 
w A t  large supersonic velocities it may become necessary to take into account 

the interaction between the boundary layer and the external inviscid flow. A s  a re
sult of such interaction, the value of the pressure, and consequently, the velocity 
also, at the outer edge of the boundary layer may differ considerably from the 
values of these quantities at infinity. For further details of this problem, see, for 
instance, Khelz and Probstin C491. In the present chapter, which deals with in
vestigations of flows at relatively small supersonic velocities, it is not necessary 
to take into account these viscous interactions, 
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(3.17) 


and a Reynolds number formed from the value of the coordinate at the particular
point on the plate 

Re, = 
Pc ' 

it becomes possible to write (3.16) in the form 

d Re, = (k)5 2  d Re**,
Pw 

wh re t is a friction parameter, expressed by equation (3.8). When 
(3.19) is rewritten in integral form, it is found that 

(3.18) 

(3.19) 

quation 

(3.20) 

A s  can be seen from equation (3.20)' in order to solve this problem it is neces
sary to have a relationship between t and Re**, i. e., it is necessary to estab
lish a "resistance law". In order to establish this law, it is necessary to revert 
to the expression for the momentum loss thickness (equation (2.76) ), and to re
arrange this by introducing the universal parameters 17 and cp by equation (3.8), 
to give 

(3.21) 

By making use of equations (3.17) and (3.8)' (3.21) is transformed to the form 

(3.22) 

The two-layer concept (laminar sublayer and turbulent core) will be used 
for the turbulent boundary layer (the basis for this simplification for supersonic 
streams is given in Section 11). 

-/lo9 
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In order to determine the relationship 9(<)in the turbulent core, the 
dq

formula from the semiempirical theory of von Kgrmhn is used (equation 2.69)  ), 
As regards the turbulence constant x in this equation, it is assumed that it is 
independent of compressibility (i.e. , of the Mach number) and of heat transfer 
(i.e.  , of the temperature factor T,/rd, and has the same numerical value as  

in an incompressible fluid, K. = 0.4. When von K5rm&nrsformula (2.69) is 
converted to the universal coordinates , it becomes 

(3.23) 

where the primes denote differentiation with respect to 7. 

By taking the square root of both sides of this equation, it is found that 

.r,'Y, (3 .24)  

where 

(3.25) 

The minus sign in the right-hand part of equation (3.24) is chosen because of the 
fact that on the plate @' < 0 (condition of convexity of the velocity profile). 

By interchanging the positions of the argument and function in (3 .24) ,  it is 
found that 

En 

(3.26) 

the first integral of which is the equation 

(3.27) 
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In order to determine the integration constant Ciit  is necessary to be given the 
value of the derivative dcp/dr] at the edge of the laminar sublayer on the side of 
the turbulent core. The simplest assumption which can be made here is that this 
quantity has the same value as in an incompressible fluid, i .e. ,  that 

in other words, it is assumed that q’(q L +- 0) is independent of compressibility 
and heat transfer (ais the empirical laminar sublayer constant, qL is the 
coordinate of the edge of the laminar sublayer). This assumption leads to the 
following result : 

(3.28) 

Here L = u L e  is the dimensionless velocity at the edge of the laminar sublayer /v /111 
(the determination of this quantity will be given later). 

By carrying out the integration in (3.28) and determining the integration 
constant from the conditions at the edge of the laminar sublayer (u = GL at 
q = vL), an expression is obtained for the velocity profile in the turbulent core 

(3.29) 

Here 9 is expressed by equation (3.25). In the laminar sublayer it is possible 
to use the Linear relationship 

cp = qs (3.30) 

for the velocity profile, from which an expression for the velocity at the edge of 
the laminar sublayer is obtained*: 
-ll__._ ~ ~ . . ~ . ~ .  . . .  . . . ~ ~ . .  . - .  . -. . _ l . .  . . .. . _ _ :- .  1 :  .... . . 

*A detailed derivation of equations (3.30) and (3.31), and a consideration 
of the problems of determining the thickness of the laminar sublayer and of the 
effects of various factors on the sublayer parameters will be given in Section 13. 
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(3.31) 

Thus the derivative - d q  ( u )  which is required for determining the Reynolds 
d4J 

number Re ** (equation 3.22) can be expressed in the turbulent core by equation 
(3.28) and in the laminar sublayer, according to (3.30), by the equation 

(3.32) 

Returning now to the expression for Re** (equation (3.22)), it can be seen 
that in evaluating the integral on the right side of this equation, the integration 
range, strictly speaking, should be divided into two-sections: the laminar sub-
layer (0 5 u 5 uL ) and the turbulent core (uL 5 u 5 l), and in each of these 

the separate values of dq/dq should be substituted, using equation (3.32) in the 

first zone and eayation (3.28) in the second. However, such an evaluation, which 

would lead to quite a complicated expression for Re*% is not necessary when the /112

relative thickness of the laminar sublayer is not very large [ ( 6L/6 )  < 0.10 -0.151. 


In this case, i t  is possible to omit the first zone, and to extend the second,zone to 

the wall. Calculations show that at large values of the friction parameter 5 the 

er ror  involved in this approximation is negligible. Using this procedure, the 

expression for dq/dq in equation (3.28) is substituted into (3.22), as a result of 

which the following expression is obtained for the Reynolds number Re **: 


(3.33) 

Here the following notation * has been introduced: 

@ ( G )  = P i i ( 1 - ii). (3-34)
Pw 

Later it is more convenient to write (3.33) in the form 

(3.35) 

* In the general case the function + depends on the two variables x and u, 
since p = p (x,u). However, according to the approximation made earlier, 
according to which p zz p (u), it is seen that + 6(i). 
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where 

(3.36a) 

I(U2)= Y(( i i )dE L- f / g  dii. (3.36b) 
o 0 

Use  is made of the assumption (3.1) for the shear stress T in the boundary 
! layer (the basis of this assumption was given in Section 10). In this case, /113-

(3.37) 

In determining I(6L) it  is assumed approximately that the density in the laminar 

sublayer is a constant quantity, equal to the density at the wall p In this case,6. W’ 
bearing ewation (3.31) in mind, it is founh that 

In evaluating the integral appearing in the expression (3.35), use is made 
of the fact that the value of L is significantly greater than unity ( L >> 1). In this 
case, the integral can be represented in the form of an asymptotic series ob
tained as a result of integration by parts: 

(3.39) 

Here 

’I 
I 
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The primes denote differentiation with respect to z. 
The values of the functions %(z)and Yr(;) and their derivatives can be 

determined at ii = 1: 

(3.41) 

The need to caIcuIate the values of the functions 9 and Ik and their derivatives /114-
at u = 0 does not arise, since it is immediately obvious that the contribution of 

the series (3.39) at u = 0 to the value of the integral is very much smaller than 

the contribution of the series at u = 1owing to the presence of a large exponen

tial multiplier in the second case, Bearing in mind equations (3.37), (3.38), I 


(3.40) and (3.41), the definite integral appearing in the right-hand part of (3.35) 

can be evaluated by using the relationship (3.39). If we confine our attention to 

the terms containing x. .C3 in the denominator, the following expression is ob

tained for Re **: 


(3.42) 

Another Reynolds number is introduced, formed from the displacement 
thickness 6* (eqgation 2.77): 

By following the same path as in the determination of Re*? it is Found that 

(3.44) 
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By forming the ratio &*be*? an expression is obtained for the shape 
parameter H * = 6 */S ** : 

Equation (3.42), which relates the Reynolds number Re**(3.17) to the 
friction parameter 5' (3.8), is in essence a "resistance law". It is important 
to note that this law is obtained without any assumptions as to the nature of the 
change of density in the boundary layer, and can be used for solving problems
in flows on impermeable surfaces with arbitrary changes of density in the bound
ary layer. 

Passing now to the establishment of the relationships which are  rewired 
later to link the density and velocity, it  can be noted that from the equation of 
state (1.86) and the condition that the pressure is constant across the boundary 
layer, the following simple relationship can be obtained between the density and 
the temperature : 

(3.46) 

In its simplest form the relationship between the temperature and velocity in the 
boundary layer is obtained by assuming that the Prandtl number P r  and its turbu
lent analog PrT are  equal to unity, while the specific heat capacity of the gas is 
constant. In this case there is a special integral energy equation known as the 
Crocco integral 

(3.47) 

He re 

(3.48) 

(T*e is the stagnation temperature). 

Sometimes in order to take into account differences in the Prandtl numbers 
(Pr and PrT) from unity a recovery coefficient r * is introduced artificially into 

* For a more detailed discussion of the recovery coefficient in a turbulent 
boundary layer, see Section 15. 
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the expressions for w and P j3.48). In t.liis case, 

(3.49) 

(Tr is the recovery temperature). 

This change in the form of the Crocco integral is based on simple arguments, 	-A16 
according to which the coefficient wmust tend to zero in the absence of heat trans
fer between the gas and the wall regardless of the values of the Prandtl numbers 
(Pr, PrT). For Prandtl numbers different from unity this condition can be satis
fied only if TZ in the equation for w (3.48) is taken to mean the equilibrium tem

perature of the thermally insulated wall Tr. A s  a consequence of this, it is 
necessary to introduce the recovery coefficient r in the expression for /3 (3.48) 
in order to satisfy the condition at the outer edge (T = T at u = 1);as  a result,e 
p assumes the form (3.49). 

By using the equations (3.47) and (3.46), the required relationship between 
the density and velocity in the boundary layer is 

P : = ( I  - oli - $2) 1 .  (3.50)Pw 

By substituting the relationships (3.50) and (3.37) and carrying out the 
integrations, the following very important expression for the function I ( 6 )  is 
obtained: 

(3.51) 

It should also be noted that the function I (u)appears as  the power on an 
exponent in equation (3.42) and (3.44), and by carrying out the equations required
in the right-hand part of these equations, using (3. 50), the following expressions 
are  obtained for Re-A"kandRe*: 

(3.52) 
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(3.53) 

Here /117

(3.54) 


By forming the ratio of the equations (3.53) and (3.52), an expression is 
obtained for the form parameter H*= 6*//6**: 

c3.55) 


In the limiting case of the flow of an incompressible gas (/3 = 0) and in the 
absence of heat transfer ( w  = 0), we obtain the expression 

(3.56) 


which gives a value of H: = 1.36 - 1.23 at Reynolds numbers of lo5- lo7, which 
is in good agreement with experiments. 

Once the resistance law (3.52) is available to form the link between the 
Reynolds number Re**(3.17) based on the momentum loss thickness and the fric
tion parameter 5' (3.8), it is not difficult to establish (using the momentum equa
tion in the form (3.20)) the required relationship between the friction coefficient 
cf and the Reynolds number Rex (3.18) based on the local value of the coordinate 
at the point on the plate, In establishing this relationship, it is convenient to use 
a rougher approximation for Re**, neglecting the second term on the right-hand 
side of equation (3.52) in comparison with the first ,  This approximation makes it 
possible to simplify the final equation for the friction coefficient cf considerably. 
The e r ror  caused by this simplification in the formula for cf is compensated to a 
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considerable extent by an appropriate choice of the interaction constant *. By /118-substituting this ftroughffexpression for Re*into equation (3.20) and carrying 
out the integration with the boundary condition Rex = 0 at S = 0 (the condition 

that the turbulent boundary Iayer begins at the leading edge of the plate), it is 
found to this degree of approximation that 

(3.57) 

The constant C1is introduced into (3.57) to f'compensate" for the approximation 
made in determining Re**. 

On converting from .C to cf in equation (3.57) according to (3.8) by using 

equation (3.50) and taking logarithms, it is found that 

(3.58) 

where I(1) is given by equation (3.54) and 

By substituting x = 0.4 into (3.58) and determining the constant C2 from 
the condition that w = P = 0, equation (3.58) can be converted into von Karm6n's 
formula for an incompressible fluid 

(3.59) 

and the following expression is obtained for the local skin friction coefficient on a 
flat plate in a compressible gas 

*It may be noted that a similar approach is used in the derivation of the 
well-known formula of von Kdrmsin for the friction coefficient on a flat plate in 
an incompressible fluid. See, for instance, [ 201, vol. 11. 
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0,41 4-Ig:(Re, cr )  1Ig (y). (3.60) 

In order to calculate the dynamic viscosity of the gas, it is necessary to /119
use either Sutherland's formula (1.75) or  a power law 

(3.61) 


where the exponent n is usually taken to be equal to 0.76. 

Let us now pass on to the determination of the mean skin friction coef
ficient : 

(3.62) 


The integral momentum relationship in the form (3.19) is used here, transform
ing it first to the form 

The left side of equation (3.63) is converted from 5 to cf by using equation (3.8) 
and carrying out the integration with the condition Re** = 0 at Rex = 0,  using 
equation (3.62), to give 

CF Re, = 2 Re**. (3.64) 

By substituting the Orough" value Re** (3.52) into the right-hand side of (3.64), it 
is found that 

2e-xz pw
CF Re, ==c, ~-e s p  [ x 5 1 ( 1 ) ] .  (3.65)

jX '  [Le 

The constant C3 is introduced here, as in equation (3.57), to "compensate" 
for the roughness of the expression for Re**. 
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By comparing equation (3.65) with equation (3.57), converted to the form 

it is not difficult to see that with the large values of the parameter Q being con- /120
sidered here, the coefficients cF and cf differ by a constant gtuantity. A s  a result, 
it can be concluded that the expression for the mean friction coefficient will have 
the form (3.60),  but with a different constant, i. e. , 

(3.66) 

The constant C4 is determined from the requirement that for w = /3 = 0, equa
tion (3.66) should reduce to the von KBrmBn relationship for the mean skin 
friction coefficient in an incompressible fluid, i .e . ,  to 

09212 - Ig (Re, CF). (3.67) 

After determining the constant C,, the following final formula is obtained for the 
mean skin friction coefficient: 

(3.68) 

Two special cases of practical importance of flow along a flat plate will now 
be considered. 

Thermally insulated. plate.. . . .  In this case, Tw = Tr, w = 0, 

(3 .69a)  
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Equation (3.60) for the local friction coefficient and equation (3.68) for the /l21 
mean friction coefficient can be transformed respectively to 

(3.70) 


and 

(3.71) 


Plate with,heat transfer to a stream of incompressible fluid. In this case, 
by letfGg tlie value of @ tend to zero it is found that 

(3.72) 


(3.73) 


In nonexplicit form, these equations give the friction coefficients as func
tions of the parameters of the approaching stream and the conditions at the wall; 
as  a result, they are not always convenient to use in practi.ce. By means of some 
simple rearrangements, it is not difficult to show that these relationships can be 
made explicitly. For this purpose it is necessary to return to equation (3.57),
which in the case of flow of an incompressible fluid in the absence of heat trans
fer between the gas and the wall reduces to the form 

(3.74) 


By dividing the two sides of equation (3.57) by the two sides of equation (3.74), it 
is found that 
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By converting equation (3.75) from e to cf using relationship (3.8) and taking 

logarithms leads to 

where 

(3.76) 

(3.77) 

(3.78)G = I g ( f - ) ’P 

For determining the friction coefficient cfoit is possible to use either von 

Grm5n’s formula, (3.59) o r  the simpler explicit relationship 

Equations (3.76) can be reduced to a transcendental equation with one 
parameter. For this purpose, this equation is rewritten in the form 

and then 2 lg(FK& is added to both sides of the resulting equation, giving 

(3.81) 
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By introducing the notation 

N = FK 

1./ZY (3.82) 
c/o 

FK F -1- GQ = k 7  f7. (3.83) 

the following equation is obtained in place of (3.81) : /123-
Ig N -t N = Q. (3.84) 

Thus, the expression for the friction coefficient can be written in the form 

(3.85) 

where the values of F and K are  determined from equations (3.77) and (3.79),
while the value of N is obtained by solving equation (3.84). The determination of 
the value of N presents no particular difficulty and can be carried out by means 
of a table of logarithms to base 10 or a graph. 

If a power relationship of the type (3.61) is assumed for the dynamic vis
cosity, the expression for the �unction G, which is needed together with F and K 
to determine N, assumes the form 

(3.86) 

It is interesting to note that by using Prandtl's formula (2.68) instead of 
the von Ka'rm6n formula (2.69) for the friction coefficient, the same expression 
(3.85) is obtained, except that in place of (3.86), G must be given by 

(3.87) 

On considering equation (3.85), it can be noted that at large Reynolds num
bers the value of the ratio c+ fo  depends only slightly on the Reynolds number. 

Actually, as the Reynolds number tends to infinity (Rex -a),or, what is the same 
thing, F -a,the following limiting equation is obtained for the ratio cf/cfo: 
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(3.28) 

The value of K expressed by equation (3.79) depends only on the compressibility /124-of the medium ( P )  and heat transfer ( w ) ,  but not on the Reynolds number, 

Thd fact that a limiting formula (3.88) exists was established and then 
widely used for setting up semiempirical methods of calculating turbulent bound
ary layers in  the work of s'. S. Kutateladze, A. I. Leont'ev, e t  al., [51, 521. 

When equation (3.85) is used for calculating the friction coefficient, it is 
useful to consider special cases, as earlier. 

In the case of a thermally insulated plate ( w = 0), the coefficient ,f3 is 
given by equations (3.69a) and (3.69b), and the function K has the form 

In an incompressible liquid in the presence of heat transfer, the value of /3 
tends towards zero, giving 

(3.90) 

For calculating the mean friction coefficient of a flat plate, it is not diffi
cult to establish the validity of a formula which agrees in form with equation 
(3.85), i. e. , 

(3.91) 

where K and N are  expressed as previously by equations (3.79) and (3 .84) ,  and 
the quantity F has the form 

(3.92) 

In order to determine the friction coefficient c
Fo it is possible to use either the /125-

von K a r m h  formula (3.67) or  the simpler power law relationship 

C F ~= 0,0307 Re,:'!'. 
(3.93) 
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The equations (3.85) and (3.91) obtained above make it possible to calculate 
rhe ratios ket-geen the local and mean friction coefficients at given values of the 
Mach number Me, the temperature factor TwDP,and the Reynolds number Rex ., 
t~ .he loczl and mean friction coefficients in an incompressible fluid (Me = 0, 
'F' T = 1) at "Le a m e  a i x e  uf the &ynoids number. However, in some cases,

nr' r 
and particularly in the evpluation of experimental data, it is more convenient to 
me as the characteristic Reynolds number the Reynolds number formed from 
the momentum loss thicloless � ? ?**, This is the case, for example, when it is 
difficult to determine the origin of the boundary layer on the tube wall, so that 
;t is impossible to use the Reynolds Rex formed from the local value of the 
coordinate. In such a case, it is convenient in comparing theory with experi
ments to have the ratios cf/c fo' in which the values of cf, cfoand cF, cFo are 
evaluated at the same values of the Reynolds number Re**. 

In order to obtain these relationships, we must return to the expression for 
the Reynolds number Re** (3.53), which in the case of the flow of an incompres
sible fluid reduces to the form 

(3.94) 

Just a s  in the case of establishing relationships (3.85) and (3 .91) ,  it is convenient 

to use a rough approximation for the Reynolds number Re**, according to which 

the terms containing 1 / b  ( l / l 0 )  are  neglected compared to unity in the right-hand 

parts of eqations (3.52) and (3.94). Thus, by proceding as before and dividing

both sides of equation (3.52) by both sides of equation (3.94) and then converting

from b to cf by means of equation (3 .8) ,  simple rearrangement gives /126
-

(3.95) 

where the functions F, K and G are given by the equations (3.77) - (3.79). 

The expression for (cF/cFaRe**has the same form as  (3 .95) ,  except that 
in this case the function F is given by equation (3.92). 

If the Reynolds number -**in equation (3.95) tends to infinity, the limiting
formula obtained earlier, equation (3.88), is obtained. 

Let us now go on to the determination of the velocity profile in the boundary 
layer, In the laminar sublayer the velocity profile is described by the linear re
lationship (3.30). In order to establish the velocity profile in the turbulent core 
of the boundary layer, we return to equation (3.29), first transforming it to the 
form 
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(3.96) 


Here the quantity 9 is given by equation (3.25). 

If it is assumed, as earlier, that the approximation (3.1) is satisfactory 
for the shear stress, and if  the densitp is constant and equal to its value at the 
wall in the laminar sublayer (for 0 5 u 5 cL), it is found from the previous 
equation: 

(3.97) 

Here I ( u )  is given by equation (3.51). 

On substituting the value of I(;) from equation (3.51) into the expression 
(3.97) and performing the integration, the following expression is obtained for the 
velocity profile in the turbulent core : /127-

A f t e r  substituting the corresponding values of the empirical constants 
(a, = 11.5, X. = 0.4, f = l/x a, = 0.218) into (3.98) and taking logarithms, 
the velocity profile reduces to the following form 

(3.99) 
5.75 Ig 11 + 5.5. 
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In the limiting case of flow of an incompressible fluid (/3 = 0) and in the 
absence of heat transfer ( w  = 0 ) ,  equation (3.99) reduces to the well known 
logarithmic velocity profile 

rp = 5,75 lq 11 -k 5,s. (3.100) 

If equation (3.52) is used for the Reynolds number Re**, the velocity pro
file expression can be readily rearranged to the following form, which is useful 
in selected practical cases : 

(3.101) 

The semiempirical method of calculating friction in a turbulent boundary 
layer on a flat plate which has been discussed above is illustrated by the graphs 
given in Figs. 23 - 26. At the same time, the experimental data of various 
authors are also given for comparison. 

Figure 23 shows the calculated results for local friction coefficients on a 
thermally insulated plate for three Reynolds numbers: lo6, lo7, lo8. The curve 
calculated from the limiting formula (3.88) is denoted by 03. 


experimental points of authors whose work was considered in Section 11, Fig. 23 

In addition to the 

also shows the points obtained from Lipmann and Dhavan [531. 

Figure 24  shows the calculated results for the mean friction factors on a 
thermally insulated surface. Apart from the experimental points from the work 
previously discussed, use has also been made of the results obtained by Pappas 
[54]. It should be noted that here (and in Fig. 23), the experimental points of 
Coles lie above the calculated curves. 

Figure 25 gives the calculated results for the local friction coefficients for 
a plate exchanging heat with the gas (heat flux directed from the gas to the wall). 

Figure 26 gives the results of calculations of the ratio of the local friction 
coefficient in a compressible gas to the friction coefficient in an incompressible 
fluid, where both coefficients are  evaluated at the same value of the Reynolds
number formed from the momentum loss thickness (equation (3 .95)) .  A s  well as 
the experimental points from the paper of Hil l  considered in Section 11, Fig. 26 
also gives experimental points at Me = 10 from a more recent paper by the same 
author [551. 
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Figure 23. 
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Figure 24. 
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Figure 25. 

Figure 27 shows a comparison of the form parameter H* calculated by equa
tion (3.55) with the value of this same form parameter obtained in the experiments 
of Pappas [54]. As can be seen from the graphs, the agreement between the cal
culated and experimental data becomes better as  the Reynolds number increases. 

Figure 27. 

Figure 17 shows the calculated velocity profiles as well as  the experimental /=velocity profiles obtained in Hill's experiments. The solid lines show the velocity
profiles calculated from equation (3.30) (Iaminar sublayer) and equation (3.99) 
(turbulent core). The dashed lines show the logarithmic velocity profiles in an 
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incompressible fluid calculated from equation (3.100). Comparison of the solid 
curves with the experimental points indicates that the effects of compressibility 
and the temperature factor on the form of the velocity profile have been correctly 
taken into account quantitatively in equation (3.99). Complete agreement of the 
calculated and experimental velocity profiles can scarcely be expected bearing in 
mind some of the simplifying assumptions made in setting up the present method 
of calculation. (This is particularly true of assumption (3.1) as to the constancy 
of the shear stress across the boundary layer). 

13. The effects of comp 

The problem of determining the thickness of the laminar sublayer and the 
velocity at i ts  outer boundary is a very important one in turbulent boundary layer 
theory, since the selection of these parameters has an appreciable effect on the 
"laws" for drag and heat transfer. It will be recalled that in the turbulent bound
ary layer theory for  incompressible fluids the laminar sublayer thickness is 
determined from simple dimensional considerations, Actually, i f  it is assumed 
that the motion in the laminar sublayer is determined by the shear stress at the 
wall T ~ ,the viscosity p ,  and the density p of the medium, it follows from 
dimensionality considerations that [171 

(3.102) 


where Q is a dimensionless empirical constant. 

The value of the constant Q cannot be obtained theoretically, and must be 
determined from experiments. Measurements carried out by Nikuradze during 
the flow of water in long cylindrical tubes showed that the value of a! was close to 
11.5. Subsequent measurements by other authors have led to values of a! lying 
between 10 and 13.5. 

The assumption of 'the constancy of the shear stress in the sublayer 
( T = const = T

W 
) and Newton's formula (equation 3.105) for  friction leads to a 

linear velocity distribution in the laminar sublayer: 

TI,U a -P y- (3.103) 
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In terms of the universal coordinates, this equation assumes the form 

T = % (3.30) 

and according to equation (3.102), i t  is found that at the edge of the sublayer" 

(3.104) 


When flow in the turbulent boundary layer of a compressible gas is considered, 
i t  is obvious that on the basis of the same dimensional considerations a formula 
similar to (3.102)must be obtained. However, as a result of the variation of p and 
p across the thickness of the sublayer, the problem remains unclear as  to how the 
value of the viscosity and the density in this formula should be selected. It is also 
not clear if the empirical constant a depends on the Mach number and temperature 
factor. It is usually assumed that p and p is equation (3.102) should be taken at 
some "distinguishing" temperature, o r  the results obtained over the entire thickness 
of the sublayer should be directly averaged. For example, in the papers of Wilson 
and van Driest to which reference has already been made, the wall temperature was 
selected as the characterizing temperature. 

h ' the paper of L. E .  Kalikhman [251 the following averaging procedure was 
used for the viscosity 

while for the density and velocity he used 

*From equations (3.104)and (3.30)it  is not difficult to obtain the relationship 
puL L/ p  = a,which is why certain authors regard the quantity a2 a s  a critical6 

Reynolds number (Recr) governing the transition from laminar flow in the sublayer 
to turbulent flow in the core. 
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Examples could be given of still other methods of averaging, but it is scarcely 
necessary to l ist  these at  present. It is quite obvious that at present it is not 
possible to solve uniquely the problem how to select the "definingy1temperature or 
the rule to be used for averaging. A s  mentioned above, this fact also leads to a 
wide variety of methods for determining the thiclmess of the laminar sublayer. A s  
is always the case in such situations, the criterion for judging the validity of the 
selection of the "defining" temperature or the averaging rule must be comparison 
with experiments. However, the absence of a sufficient quantity of experimental 
data makes i t  impossible to carry out this comparison at present. Until sufficient 
experimental data a re  accumulated, the preference in selecting among the hypo
theses of the temperature (or method of averaging) must obviously be 
given to the one which leads to the simplest results. 

The flow in the laminar sublayer of the compmssible gas can be described 
most simply by taking the wall temperature as  the temperature. J~-I this 
case the velocity profile is described by the same linear relationship (3.30) as  is 
valid for an incompressible fluid. The experimental data given in Section 11 for 
velocity profiles indicate that this relationship is well satisfied at supersonic gas 
velocities. 

The methods indicated above for taking into account the effects of com
pressibility and heat transfer on the parameters of the laminar sublayer by means 
of selecting a suitable "defining" temperature o r  method of averaging over the 
thickness of the sublayer do not make it possible to car ry  out a detailed analysis 
of the problem. Much more information on the velocity profile in the laminar 
sublayer can be obtained if  the actual change in the gas viscosity with temperature 
across the sublayer can be allowed for. This has been done in the work of Czarnecki 
and Monta 1561. Following these authors, Newton's formula for the shear s t ress  

(3.105) 

is written in the form 

(3.106) 

where cp and 11 are  the universal coordinates defined by relationship (3 .8) .  

If the assumptions are  made that the shear stress is constant over the thickness 
of the sublayer (3. l ) ,  that there is a power dependence of viscosity on temperature 
(3. 61), and that Crocco's integral (3.47) can be used to interrelate the temperature 
and viscosity, it is possible to obtain from equation (3.106) the following expression 
for the velocity profile in the laminar sublayer: 

(3.107) 

where w ,  and 5 are  given by equations (3.49) and (3.8).  
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The results of calculations by equation (3.107)for a Mach number Me = 9, 

Reynolds numbers Re
X 

= lo6 ,  107 and 108 and two values of the temperature factor 
Tw/Te = 15.1 (thermally insulated surface) and TwTe = 2.6 (strongly cooled sur
face) are  shown in Fig. 28. From Fig. 28 i t  can be seen that on the thermally 
insulated plate, the compressibility has a quite feeble effect on the shape of the 
velocity profile: all the curves for the three Reynolds numbers fall close to the 
curveg, = q.As  a result, the value of the coordinate 11L marking the edge of the 
laminar sublayer is close to its value in the incompressible fluid(qL = 10 - l l h  On /136 
the strongly cooled plate (Tw/Te = 2.6) the velocity profiles becomes more gradual, 
and are  appreciably displaced relative to the profile g, = q. In this case, the value 
of the coordinate rlL increases appreciably*. 

Fig. 28. 

*It should be noted here that the estimation of the effect of compressibility and 
heat transfer on the magnitude of the coordinate 1lL which is made here is not exact, 
since the value of the coordinate YL was obtained in the work of Czarnecki and Monta 
was obtained as  a result of merging the velocity profile (3.107)in the laminar sublayer 
with the logarithmic velocity profile for an incompressible fluid. This fact makes i t  
impossible to make a quantitative evaluation on the basis of a similar type of analy
sis, but this analysis is definitely useful for explaining the tendencies and the nature 
of the effect of compressibility and heat transfer over the thickness of the laminar 
sublayer. Naturally, the establishment of quantitative relationships for the change of 
thickness of the laminar sublayer 1 as a function of the Mach number and tempera
ture factor is possible only experimentally at present. 
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L. M. Zysina-Molozhen and I.A. Soskova [281 arrived at similar results, 
using a linear dependence of viscosity on temperature (n = 1). In this case, the 
velocity profile has the form 

(3.108) 


where o and fl are given by equation (3.48). Using the profile (3.108)in the laminar 
sublayer and the van Driest velocity profile [221 in the turbulent core, these 
workers were able bymerging these profiles to determine the value of rl

L for 
various values of the Mach number and temperature factor (Fig. 29, in which 2 
represents the experimental data of Lobb, Winkler and Persch for M 

00 
= 5; 1 and 3 

represent the experimental data of L. .M. Zysina-Molozhen and I. N. Soskova for 
= 1 .45  and Ma> = 0 . 2  respectively). As can be seen from Fig. 29, the value of 

11L increases markedly in the case of strong cooling*. A similar tendency was 
noted in the work of Lobb, Winkler and Persch (Fig. 21) a s  well a s  in the experi
ments of Hill, as can be seen from the same Fig. 21, which did not show this 
phenomenon. It follows that on thermally insulated surfaces and during heat trans
fer  from the surface to the gas the value of 11L is close to its value for the incom
pressible fluid. A definite decision on the effect of heat transfer and compressibility 
on the parameter T I L  can obviously only be made, however, after a sufficiently large 

quantity of experimental data has been collected. Until this problem is solved 

7i. 

2!7u - .

1fi0 ... . 

720 _ - Calculation, 

' 3  

Fig. 29. 

*In spite of the fact that the use of the van Driest velocity profile is more 
natural than the logarithmic velocity profile in an incompressible fluid, the note made 
earlier in connection with Fig. 28 is also valid in the present case. 
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experimentally it will obviously be necessary to assume for L = Q the value of the 
parameters obtained in experiments with incompressible fluids, i. e., Q = 11.5. 

.. 14. Empirical methods of calculating drag on a flat plate* 

This method is based on the assumption that the following functional relation
ship applies: 

where the function I+** depends only on the Reynolds number Re** formed from the 
momentum loss thickness, while the functions F 

C 
and RRe ** are such that 

The arguments leading to the relationship (3.109) are  obvious i f  this relationship is 
given in the form 

/138-

(-$).. .* - liRS** 
1 (3.111)-- pc 

where 

CJ,, = 2$**Re**.  (3.112) 

By comparing equation (3.111) with equation (3.95) in section 12,  it is seen that in 
contrast to (3 .95) ,  the right-hand part of (3.111) is independent of the Reynolds 
number Re**, which takes place at sufficiently large Reynolds numbers (see the 
limiting formula (3.88)). 

In order to establish the relationship between the friction coefficient cf and 
the Reynolds number formed from the distance from the leading edge of the plate 
Rex, use  is made of the integral momentum equation (3.20) written in the form 

.- - . -

*See the paper by Spalding and Chi [ 181 discussed earlier in this chapter. 
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By multiplying both sides of this equation by FRe**/Fc, we have 

(3.114) 

By introducing the notation 

(3.115) 

and noting that according to (3 .109)  there is a unique relationship between (cfFc) 

and (FRe**Re**), it can be concluded that the following relationship exists 

-2 
1 

c1P,=:. 11 ,~(Re, F R e X ) ,  (3.116) 

where the function depends only on the Reynolds number R e  , and is independent /139
X 

of the Mach number Me and the temperature factor Tw/Te, while 

(3 .117)  

In a similar way, i t  can be found that 

(3.118) 

where $ is once again independent of Me and Tw/T e' 
Equations (3.116) and (3.118) can be represented in the form 

(3.119) 

(3.120) 

By comparing equations (3.119) and (3.120) with their analogy (3.95),  i t  can be seen 
that in contrast to (3 .95) ,  the right-hand parts of (3.119) and (3.120) are not 
dependent on the Reynolds number Rex. As a result, in the present method of 
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calculation, the following ratios must be equal 

In order to determine the functions $**, 7i)z and the authors used the relation
ships 

(3.123) 

where x. = 0,4, u = 12, to = =  1'2G. 

/140The form of one of the two unknown functions I? and F
Re

*.F(or F
Rex

) which -
C

determine the friction coefficient, and. hence the function F was selected on the
C 

basis of an analysis of existing semi-empirical methods of calculation. The analysis
of the semi-empirical methods carried out by the authors showed that the highest 
accuracy is given by the methods whose results can be represented in the form 
(3. lll), (3.119) or  (3.120).  leading to the following expression for Fc: 

where K is expressed by equation (3.79)>and the coefficients w and 8 appearing in 
(3.79) a re  given by equation (3.49). In other words, the function Fc is obtained in 
exactly the same way as  was used in the semi-empirical method proposed in 
Section 12. 

The second unknown function FRe** was  determined empirically by using experi
mental data on the friction coeffieient. It was  assumed that the function FRe ** had 
the form 

(3.125) 

The arguments leading to equation (3.125) were also obtained on the basis of an 
analysis of existing semi-empirical methods. 
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By using the functions $R*- , I#,-,.Ir, and F
C 

determined above and numerous 

experimental values, the authors of this method obtained the values of p and q from 
the condition that the least mean-square value of the following quantity should re
sult: 


('f, exp - c  f ,  theor) 

Cf ,  theor 

A s  a result, it was found that p = -0.702, and q = 0.772. The corresponding ex
pression for FRe ** was found to be 

(3.126) 

In the case of flow along a thermally insulated wall, 

(3.127) 

Comparison of this method with the experimental data provided by this author 
showed that the method gives the smallest value of the mean square e r ro r  (9.9%) 
compared with the other methods. 

In order to simplify the calculations, the auxiliary functions which are re
quired have been tabulated (Tables 9-11). 

The procedure for carrying out the calculations by the proposed method reduces 
to the following. At given values of the Mach number Me and the temperature 

factor Tw/Te, the function F
C 

is determined from Table 9. The function FRe** is 

then determined from equation (3.126) o r  Table 10, and then F is found from 
Rex 

equation (3.115). Finally, from the given value of the Reynolds number (Re** o r  
Rex) and the previously determined functions FRe, (or FRe**) and F 

C '  
the values 

of cf and cF are  determined from Table 11. 

This method of calculating friction on a flat plate in a turbulent boundary layer 
does not involve any new physical hypotheses. The expression for the function Fc 

was taken to be the same as that obtained by semi-empirical means in Section 12. The 
function FRe ** was determined purely empirically. On the whole, this method can 
be recommended as a simple engineering method of calculating friction on a flat 
plate. 
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TABLE 9. Values of the Function Fc for Various Values of Me and Tw/Te 

, 
0.05 0,3743 0,!1(136 0,4834 0,G222 0,7999 1,0154 1,2759 1,5713 
0 , l  0,4331 0,462j 0,5477 0,6S29 0,t;K23 1,US42 1,3451 1,6444 

: 0.2 	 0 . 9 3 4  I.IS3G 1.4491 1 ,i534 
1,11370 1,2849 l , j 1 3 7  1,s41s 

0 - 4  0,6662 ! 0,6957 ~ 0,5S21 0,9"03 1,1069 1,3370 ,I ,6nS3 1,9194 
0 , j  : O,'i2S(j U,iSSO 0,8446 0,9839 1,1713 1,4031 .I ,tiiti7 1,9903 
0,6 0,7873 0,SlI;S 0,9035 1,0434 1,2318 1,4(i51 i ,7405 2,11564 , 

I 0,s ' O,S9i2 0,9267 1,0137 1 ,lZJ(l!i 1,3445 1,5S@2 i,85:59 2 , l i S j  
1 1,OuOO .1,0295 I,,1167 1 , 5 S l  1.4494 ~ .1 ,GS7I .I ,9(; 24 2,?9 IS 
2 1,4571 , 1,4S67 i,5744 1,717li 1.9130 2.1572 2,4472 2,  ' iWN 

'	 3 1,SGGO 1,SO56 1,9436 2 , 1 2 3  2;:3254 2 ,  Si33 2 ,  SliS7 3 I ?!I92 
4 2,2500 2,2790 2.367s 2,512ti 2,i117 2 ,  9ti2 I 3,261l 3 ,  cirlGI; 

' 5 2,6lSO 2,6457 2,7359 2 , 3 1 2  3,0S13 3,3336 3,6335 3 ,  'Js47 
I	 6 1 2.9747 3, W I ~  3,0927 3,23s4 3,4393 3,6930 3,9071 4,3193 

X 3,693s 3,7823 3 , 9 m  /1,1305 4,3sti3 4,6937 5,0<-)05
10 4,3iiOS . 4,4493 4,59.,s 4,79Sti 5,0550 5,3(i57 5,7259 

~ 12 5 ,m 17 5 , i o m  5,2450 5,4504 5,711ss 6,0204 li,3s::, 
.I4 5,65U5 I 5,7391 5,8860 ti, US% G,3491 ti,G621 7,0271 , 

6.2797 I 6.3633 6,5153 (i,719G G ,  9i95 7,2937 7,G(i(G 
6 ; 9 o l ~ l  c;'Js97 7;1::lis 7,3413 7 ,lXIl9 7,91iO $,2S:rl 
7,5157 7,6045 7,5517 7,9564 X,2175 s,5334 S,!lO27 
9.0297 9.4 IS4 9 , 2 w  9,/i711 9,7331 10,0505 10.1222 

10,75413 111,9602 11,223s 11,5415 .11,9149 
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TABLE 10. Values of the Function FRe**�or Various Values of Me and T/Te 

0.05 ! 82.7405 93.5950 125.3092 173.1153 234.1033 306. 3459 385.2642 478.9229 

0 . 4  
0.5 
0.6 
0.8 

3,s59s 
2.2779 
2 12:u 
1.3595 

473SOt ~ 

3,1S26 ' 

2,4095 
,1,57GS 

5,8456 
4,2071 
3,2157 
2,1043 

S,07>7 
5,5121 
4,4(12(t
2,91\71 

10,9230 
7,9618 
6,0091 
3,9323 

14,2910 
10,2553 

7,8615 
5,1445 

IS, 1,133 
13,0355 

9,9636 
G ,  5201 

22,3414
1(i,UT92 
12,2900 
8, U425 

1 
2 
3 
4 

' 

~ 

1 ,0000 
0,3(iOU 
0,19SO 
0,123;  

i 

1:136S 
0;40S5 
0,2247 
0,1471 ~ 

1.SI45 
0:5452 
0,2999 , 
0,1963 

2.0923 
O;i532 
0,4143 
0,2711 

. . ~~ 

l,OtS.(
0,5604 
0,3tit\7 

3,7025 
1,332s 
0,7332 
0.4795 

4 ,6926 
1,BS92 
0,9292 
0,GOSl 

5,7833 
2,0937 
.I ,1462 
0,7301 

3 0.U933 ' 0,lOjS 1,1412 I 0,1951 0,2639 0,3/153 0,4377 0,5393 
0,lOSO 
0.07UD ' 

0,1491 
0,0976 

0,2017 
0;1320 

0,2639 
0,1727 
0,1243 

0,3345 
0,2189 
O;I575 

0,4126 
0,2700 
0,1943 

(1,(193l 0;I'tIl 0,14%3 
0,0757 0,0959 0,1153 
0,0622 (I,078% 0,0972 
0 ,(I523 0,U6(i2 ' 0,0117 
0,0447 0,(1567 o,o'ioo
0 ,(1322 0,040s 0,0jO3
0 ,U246 0,0312 U103S5 
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Table 10 (Continued) 

11 i'? 1 
916,5768 .042,F29 
323,9519 3i5,32SG
118,7770 135.1119 ' 
G5,33?2 

31,8949 37,1718 42,7.;77 49,63'30 I 

22.9549 26 ,7527 ::0.7723 35,0050 
17,5454 2O;44S2 2:3 ~ 52 !0 2G.1557 
1L,4SLG j 13,3512 15,3920 

S ,  2 W 1  9,6305
2,9747 ' 3,CitXiS 
1.ti364 i .9U71 
1 ;m1s , 1;2'1sO 
0,7707 0 ,s9s2 
0,5S91 O,6SG2
0,3SS , U,4493 
0,2i74 0,3233 
0,2121 0,2471 
0;lti90 U,1969 
0,13SS 0,1617 
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1174 ~ 722 
422,H793 
152.2295 

j'+,S000 
:i9,439S 
3u. 1455 

312,620
472,5207 
170,0993 
9 3 , 5 7 1 ~, 
131,2328 
4/t,(J696
33,6542 
22,042s 
15,SM3 
5,7109 , 
3.1416 

145G,116 I 
524,2767 1 
18S,(j946 1 

i0?1,8009 
G7,92RS ' 
48,8873 1 
37,3GF5 I 
24,4525 ; 
17,5946 
G.3352 
314850 
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TABLE 11. Values of the Functions Fccf, FccF, Fm **Re** and F 
RexRex 

, 

0.0010 ~ 0,001117 2,873.10' , 5,758.10" 0,OOGO 0,008205 233,O 5,679.10' 

0.0015 

0,0c120 

0,0025 

0 ,GO30 

0,0035 

0,0040 

0,0045 

0,0050 

1 0,0055 
I 

I
I 

0,00171G 3,955.105 ' 4,610.108 , 0,0065 0,009105 177,G 3,901.1W 

O,@O2333 5,425. I O '  4,651 . I O 7  0,0070 0,010052 140,4 2,796.104 

114,4 2,078.10' 

05,(32 1,59240' 

92.49 1,251-10' 

73,91 ~ 1,006*10' 

62,55 j 8,253*103 

5j,S7 ' G,8S3..1OS 

0,0073'15 319,4 , 8,G97*104 0,0105 0,01732 50,4G 5, 826 .io3 
I 
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15. Relationship between friction and heat transferon a flat plate (Reynolds’_ _  
analogy). Recovery c6ifficient. 

According to Fourier’s law, the specific heat flux between a gas and wall 
can be represented in the form: 

(3.128) 

T 


By converting this equation from temperatures to enthalpies (hs1c , , d T ) ,  and 
0 

carrying out some simple rearrangements, i t  is found that 

(3.129) 

Here 

In order to determine the derivative (DE/&?), we return to the energy equa
tion in terms of Crocco’s variables, equation (2 .65)  [221. In the present case of 
flow along a flat plate placed at  zero angle of attack (clpldj = 0), and assuming a 
a homogeneous gas (dci lalc = 0) , this equation assumes the form 

Here Prm = Pr in the laminar sublayer, and Prm = PrT in the turbulent core 

(see equations (1.103 and 2.33)) .  

A further simplifying assumption is made that the enthalpy h is a function 
only of the velocity u and is independent of the longitudinal coordinate E ,  i. e. , 
h = h(u). A s  a basis for this assumption it can be pointed out it is exactly satis
fied if the Prandtl number and its turbulent analog are  equal to unity. This is 
satisfied if the Prandtl number and i ts  turbulent analog are  equal to unity. This 
is the case when the Crocco integral occurs. Consequently, i t  can be expected
that for small deviations of the Prandtl number and its turbulent analog from 
unity, the dependence of the enthalpy on the longitudinal coordinate will be 
insignificant. If this assumption is made (Bh ld5  :-= O), (3.131) can be rewritten as 

(3.132) 
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Here 

and the primes denote derivatives with respect to the dimensionless velocity E. The /148-
boundary conditions for equation (3.132)are  of the form 

h e  h, at ii == 0,-
h = l  at ii = 1. I (3.133) 

By int grating equation (3.132)once, j s found tha. 

(3.134) 


Integration of (3.134)leads to the relationship 

(3.135) 


where 

(3.136) 


(3.137) 


Bearing in mind the second of the boundary condi.tions (3.133), an expression is ob
tained from equation (3.134)for the derivative which is required for determining
the heat flux: 
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Substituting the expression (3.138)into the expressions (3.134) and (3.129), it is 
found that 

(3.139) 


Qw = - rwS(1)[he+2 R ( I ) +U2 -h 3-	1 
u, - (3.140) 

The quantity 

(3.141) 


is usually termed the equilibrium enthalpy of a thermally insulated surface, o r  the 
recovery enthalpy. The factor 

r = 2R ( I ) ,  (3.142) 

which appears the expression for the equilibrium enthalpy (3.141)is termed the re
covery coefficient. The recovery coefficient characterizes the difference between 
the value of the equilibrium enthalpy Hr and the enthalpy of adiabatic and isentropic 

2retardation of the gas, He = he + Ue/2, o r  in other words, i t  characterizes the 
non-adiabaticity of the flow processes in the boundary layer. 

Now we introduce the dimensionless heat transfer coefficient (Stanton number): 

Then, using the expression for the local friction coefficient cf (equation (2.85)), the 

following expression is obtained from equation (3.140): 

2ch z (1). (3.144) 
C f  

The quantity S(l)is termed the Reynolds analogy parameter. 

Thus, in order to calculate the local flux density q
W 

i t  is necessary to know the 

recovery coefficient r, the Reynolds analogy parameter S(1), and the local friction /150-
coefficient cf:  

(3.145) 
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The recovery coefficient. It follows from equations (3.142)and (3.137) that the 
general expression for the recovery coefficient for variable Prandtl number Prm is 

If the generalized Prandtl number Prm can be regarded as  constant over the 
boundary layer cross-section, equation (3.146)can be considerably simplified, and 
after some rearrangements assumes the form 

(3.147) 


When the generalized Prandtl number is equal to unity (Pr, = l), which means 
that in the two-layer Prandtl model for the turbulent boundary layer the Prandtl 
number Pr'is constant and equal to unity in the laminar sublayer while its turbulent 
analog PrT is constant and equal to unity in the turbulent core, the recovery factor 
becomes equal to unity (r = l), as follows from equation (3.147). In this case the 
equilibrium enthalpy of the heat insulated surface is equal to the enthalpy of an adiabatic 
and isentropic retardation of the gas: Hr = He. Thus i t  is only when Pr = PrT = 1 

that the motion in the boundary layer can be compared with adiabatic motion. 

When Prm = const # 1, i t  can be seen from equation (3.147) that to determine the 
recovery coefficient i t  is necessary to know the distribution of the shear stresses 
across the boundary layer t = t (U). 

At present, (as already noted in Section l o ) ,  there is only a very small amount of /151-information available on the nature of this distribution even in  the case of the flow of 
incompressible fluids. According to the experimental data of Klebanoff which is 
shown in Fig. 2, the dependence of the shear stress on the transverse coordinate is 
close to linear and can be described approximately by equation (3.2). The dependence 
of the shear stress on velocity in the turbulent core of the boundary layer can be given 
approximately in the form shown in Fig. 3 and described by equation (3.5). As can be 
seen from Fig. 3,  for a value of C0 = 30 and the range of velocities 0 < 12 <.0.8, the 
shear stress varies in the range 0.9<% < 1, which makes it possible to assume 
approximately that the shear stress in the boundary layer is constant and equal to its 
value at the wall. If this assumption is made, then within the framework of the two-
zone model, equation (3.147)leads to the following expression for the recovery coef
ficient 

-2 
= Pr, - (Pr, - Pr) uL. (3.148) 
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where 6L is the dimensionless velocity at the edge of the laminar sublayer defined by 

equation (3.31). It should be noted that in obtaining equation (3.148) the integration 
interval 0 < ii < 1 was divided into two zones: 0 C-zl-<z? L for the laminar sublayer,

* where Prm = Pr, and cL < ii < 1 for the turbulent core, where Prm = PrT . 
Unfortunately, up to the present time there are  no sufficiently reliable data on the /152-turbulent Prandtl number. Attempts to determine the value of PrT directly from 

velocity and temperature profile measurements during the flow of air in tubes and 
channels have led to values of PrT which are a little smaller than unity. However, in 
the case of heat transfer to liquid metals, values of the turbulent Prandtl number 
PrT> 1 are found. This difference of PrT from unity is obviously caused by dif
ferent effects of the process of molecular transport within the turbulent transport 
elements (the ultimate packets of the gas which take part in turbulent mixing) on the 
mechanisms of momentum and heat transport. The certain degree of ambiguity in 
the value of PrT is sometimes used to obtain better agreement between theory and 

experiment by means of a suitable choice of the value of the Prandtl number. Until 
there is a final experimental solution of the problem of what the value of PrT really 
is ,  it follows that its value must be taken as unity, a s  has been done by several 
investigators. 

Assuming that PrT = 1in the expression for the recovery coefficient (3.148), 
i t  is found that** 

-2 r = 1- (1 - Pr) uL’ (3.149) 

For Prandtl numbers close to unity and over the range of velocities at the edge of 
the laminar sublayer from 6L = 0.2 to 0.8, equation (3.149)can be replaced simple 

formula to an accuracy of rf: 10%: 
-2 r = 1 - (1 - Pr) uL N Pr’/a. (3.150) 

*It is appropriate to note here that differences of the Prandtl number from unity
leads within the two-layer model of the turbulent boundary layer leads to the situation 
that the thicknesses of the dynamic and thermal sublayers appear to be different. To 
allow strictly for this difference leads to important difficulties arising in the calcu
lation of heat transfer, but this does not appear to be necessary at Prandtl numbers 
which do not differ too much from unity. In this connection it can be noted that heat 
transfer calculations based on the Prandtl two-layer model of the boundary layer 
usually leads to satisfactory results at  Prandtl numbers close to unity. At Prandtl 
number which are  significantly different from unity, the more complicated three-layer 
model due to von K k - d n  gives better results. For  a discussion of this, and also for 
information on the calculation of heat transfer at very small values of the Prandtl 
number, see [ 571. 

**The first expression for the recovery coefficient analogous to equation (3.149) 
was obtained by M. F. Shirokov [ 581. 
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When Pr = 5.72 (air), equation (3.150) leads to a value of the recovery coefficient 
r = 0.895, which is in good agreement with the experimental data, as will be shown 
below. 

Apart from the use of the two-layer model and these very simplest assumptions /153 
as to the shear stress distribution in the boundary layer, attempts have been made 
to compute recovery coefficients using the more complicated von K6rm6.n three-layer 
model [ 59 I .  

It may be noted that according to this model 60 1 the velocity profile in the 
turbulent boundary layer of an incompressible fluid is divided into three zones: 1) the 
laminar sublayer, in which 

cp = q for 0 Q q <  5; (3.151a) 

2) the transition (buffer) zones, within which 

3) the completely turbulent region: 

cp = 5,5 -k 2,5 In for q > 30. (3.151~) 

In the work of van Driest which is being considered [ 591 the shear stress is 
assumed to be constant and equal to the value at the wall in the forst two zones. In 
the third zone the shear stress distribution is taken to be of the form (3.5). The 
final formula obtained by van Driest for calculating the recovery coefficient is 

(3.152) 

(1nG)In [1 + -
‘(“T 
-- 1)] 

A s  follows from what has been said above, this equation is valid for the case of flow 
of incompressible fluids. As van Driest showed, equation (3.152) can be generalized 
io cover the case of motion of a compressible gas (without heat transfer) if we intro- /154-
duce instead of cfo the quantity cf multiplied by the factor (1 + r ’$ Me2) ,  where cf 

is taken to be the local friction coefficient for the compressible gas. When calculations 
were carried out by equation (3.152) i t  appeared that if  the friction coefficient for an 
incompressible stream, cfo’ was used and a value of the turbulent Prandtl number of 
0.86 was assumed, then for the Reynolds number range IO5 .<Rex < lo8,  the 
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recovery coefficient would be a constant quantity equal to 0.88. The value of the 
Prandtl number was assumed equal to 0.71. 

The attempt to take into account the effect of compressibility on the value of r in 
equation (3.152) by introducing into this equation the friction coefficient cf for the 
compressible stream and the multiplier ( 2  + r '$M:) on cf gives a value of the re
covery coefficient which is only slightly dependent on the Mach number (for0 <Me<5) 
(see Fig. 30). Two calculated curves are given in Fig. 30. The first curve (1)was 
calculated for wind tunnel conditions (stagnation temperature TE = 311'K). Van 
Driest explains the difference between these curves as  being due to the different 
natures of the changes in the molecular Prandtl number in the wind tunnel and in free 
flight. 

He 

Figure 30. 

Experimental data on the recovery coefficient. The first measurements of the 
recovery coefficient were made more than a quarter century ago. In a paper by L. 
Crocco, published in 1941 [ 611 , it was shown as a result of experimental inves-ti
gations of turbulent boundary layers in supersonic streams that the recovery coef
ficient varied over the range 0.91-0.98, with a noticeable dependence of r on the /155-
Mach number Me. 

Later a whole series of experimental investigations were made to determine the 
recovery coefficient. The results of some of these investigations carried nut in the 
years 1949-1952 are  shown in Table 12, which is taken from the paper by Kaye [621. /156-

More precise measurements of the recovery coefficient have been made in the 
course of the last 10-15 years. 

The experiments of__Pappas [ 541. In these experiments, measurements were made 
of the surface temperatures of thermally insulated plates and the Mach number at the 
outer edge of the boundary layer. The recovery coefficients were calculated from the 
formula 

(3.153) 
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TABLE 12. 

Author Yea1 
'. .  

Uimbrou 10110 cone 2,7 

paraboloid 4 3  


-


Stolder, 19jO plate 0,8S4+0,897) i 
Rubezin, i 0 , O O i  
Tendelend 

0,830 k 0 .OO$ 

iber  0,92 
0,97

cylinder 

airs, 1932 cone, 7 0,232.2 -@,on7 
Sternberg cone-

cylinder 

3ldk 3 2 , 4  0,9OF 

Stsu'n, (Jj2 100 cone, 0,4  -:-4 
Sherer 40Ocone- 0.3+1

cylinder 

where T i  is the temperature of the adiabatically and isentropically retarded gas. 
Measurements were carried out at Mach numbers of Me = 1 .69  and 2.27 .  The 
Reynolds number varied from 106 to 107 . The results of the measurements a re  
shown in Figs. 31 and 32. A s  can be seen from the figures, the recovery coefficient 
decreases as  the Reynolds number increases from about 0 .90  to 0.89;  in most of the 
experiments the points fall close to the value 0 .89 .  

The experiments of Shoulberg, Hill & Rivas [63 I . In these experiments, mea
surements were ma-the recovery coefficient on a flat plate in a wind tunnel. The /157-measurement procedure and method of calculation were the same a s  in the work of 
Pappas considered above. Measurements were carried out over the following ranges
of the Mach and Reynolds numbers: 1.9 < Me< 3.14 and 4.106 < Re, < 17.106. The 
experimental results a re  shown in Figs. 33 and 34. It can be seen from Fig. 33 that 
as  the Reynolds number increases the recovery coefficient slowly decreases. Al
though this decrease is only about 0 . 5 %  over this range of the Reynolds number, 
there is nevertheless quite a clear tendency for  r to decrease. As regards the effect 
of the Mach number on the recovery coefficient, Fig. 34 shows that there is no ef�ect 
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Figure 31. Figure 32. 

Figure 33. 

Figure 34. 

of Me over the range investigated. The values of the measured recovery coefficients 

(Fig. 33) were about 1%smaller than the values calculated by equation (3.150),  in 
which the Prandtl number was determined at the wall temperature Tw = Tr. 

The experiments of Tendeland 641. Measurements were carried out on the sur
face of a cylinder model with a conical front (cylinder diameter was 2 inches, cylinder 
length was 14.75 inches, and the cone had an included angle of 20') during the flow past 
the model of air at Mach numbers Moo = 3 ,  3 .44 ,  4 .08 ,  4 . 5 6  and 5.04.  The local 

Reynolds numbers calculated on the basis of 1foot (Rex/foot) were respectively 
3 x lo6 ,  4 x lo6 ,  3 . 6  x l o6 ,  2 . 8  x 106 and 2 . 3  x lo6.  The recovery coefficients were 
calculated from the values of the temperature measured along the model under equi
librium conditions. After making corrections for the relatively small radiation losses 
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to the cool side walls of the wind tunnel using the local temperature values, the local 
values of the Mach number Me and the values of the stagnation temperatures were 
used for determining the local values of the recovery coefficients. 

The measured results are  shown in Fig. 35. The distance from the nose of the 
model (in diameters) is plotted along the abscissa. On considering these graphs it 
can be seen that for Ma, = 3.00, 3.44 and 4.08, the recovery coefficients vary from 
about 0.88 to 0.89, while the value of r for the conical section was rather smaller 
than the value of r for the cylindrical part of the model. For Moo = 4.56 and 5 . 0 4  

the value of r close to the junction of the nose and cylindrical section fell appreciably. 
This phenomenon was explained by the author as being caused by the presence of a 
considerable pressure drop at the junction and a temperature gradient along the model 
axis which led to a reduction in temperature, and, as  a result of this, to considerable 
errors  in determining r for the junction region. 

The experiments of Adcock, Peterson & McRee 1651. This work presents the 
resulis of-an experimental investigation of the turbulent boundary layer on a cylinder 
at a Mach number Me = 6 and at Reynolds numbers (formed from the distance from the 
leading edge) in the range 5 \< Re,.lO-' Q 33. The dependence of the recovery coef

ficient on the distance from the leading edge of the model is shown in Fig. 36. As in 

the case of the work by Pappas and Shoulberg et al. , a tendency for the value of r to 

decrease with increase of the Reynolds number is observed. In the range of Reynolds 

numbers investigated the values of the recovery coefficients fell in the range 

0.S75 < r < 0.895. 


In summarizing the experimental data of the various authors given above, the 
conclusion can be reached that the recovery coefficient depends very slightly on the 
local Reynolds number Rex and is independent of the Mach number. Over the range 
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of Reynolds and Mach numbers investigated (up to Me = 6), the values of the recovery 
coefficient fell in the range 0.88 S r < 0.90, It may be mentioned that there is 
satisfactory agreement between the Van Driest formula (3.152) and the experimental 
data over the range of Mach numbers being considered. 

f 
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Figure 36. 

In order to develop a sufficiently reliable theoretical method for calculating the 
recovery coefficients at supersonic velocities i t  is necessary to carry out detailed 
experimental investigations of the structure of the laminar sublayer and the 
transitional (buffer) layer, and also of the shear stress distribution in turbulent 
boundary layers at these velocities. 

Until a satisfactory theory for  calculating recovery coefficients is set up and 
experimental data are  obtained at  high supersonic velocities, it can be assumed i n  
practical calculations that 0.88 <r \< 0.90. 

Parameter of the Reynolds analogy. A general expression for the coefficient of 
the Reynolds analogy can be seen from equations (3.144) and (3.136) to have the form 

(3.154) 

If the generalized Prandtl number Prm is constant, equation (3.154) becomes 

(3.155) 

When the generalized Prandtl number is equal to unity (Pr = l), then the use 
of the assumption m 

Pr = P rT = 1 

-
/160 
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within the framework of the two-layer Prandtl model reduces equation (3.155) to the 
classical expression for the Reynolds analogy 

C h  = 1 
cj. (3.156) 

When Prm = const # 1, it is necessary in order to determine the parameter of 
the Reynolds analogy to be given the shear stress distribution in the boundary layer
-

z (21), just as in the case of determining the recovery coefficient r. With the /161
-
assumption (3.1) (T = const = =  T ~ )and using the two-layer model for the turbulent 
boundary layer, the following expression is obtained from equation (3.155) for the 
Reynolds analogy par aweter : 

Lf the turbulent Prandtl number is taken to be unity (PrT= l), equation (3.157) 
assumes the form 

('1 - Pr)dL]- l .  (3.158) 

For  changes of fiL in the range 0.4 to 0.9 and Prandtl numbers close to unity, 
equation (3.158) can be replaced (to within an accuracy of f 10%)by the much simpler
formula 

When Pr = 0.72, equation (3.159) gives a value of 2ch/cf = 1.24. Using the same 
assumptions which were used in obtaining equation (3.152) for the recovery coef
ficient, Van Driest [ 591 obtained the following parameter for the Reynolds analogy 
parameter: 

(3.160) 

A s  the author noted, this formula is valid for 0.7 < PrT < 1. A s  in the calculation of 
r using equation (3.152), it is recommended that a value of the turbulent Prandtl 
number of 0.86 he used in this equation. 

In order to allow for the effects of compressibility and heat transfer on the 
Reynolds analogy parameter, Van Driest suggests that it is necessary to introduce 
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a multiplier (7', , ,/TC)(1 -1- rL;J h\:) ,on cf, while cf itself is taken to be the local 
friction coefficient in the compressible gas. 

The results of calculating the quantity 2ch/cf from formula (3.160) for the con-
&ions in a wind tunnel (T: = 338'K, curve 1)and free flight conditions (Te = 500°K, 
curve 2)and various values of the Mach number a re  shown in Fig. 37. Figure 38 
shows the results of calculations by equations (3.157), (3.158), (3.159) and (3.160) as 
functions of the Reynolds number in incompressible fluid streams. 

Figure 37. Figure 38. 

4 
Figure 39. 

Ln order to evaluate the accuracy of the formulas given above, let us  now turn 
our attention to experimental data. 

Experimental data on the Reynolds analogy parameter 2ch/cf. The experimental 
data on heat transfer and friction obtained by various authors up to 1954 were evalu
ated by Seiff [ 681. By analyzing the results of his evaluation (see Fig. 39), Seiff 

-/162 
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concluded that in the turbulent boundary layer the experimental data could be 

represented as  follows with an accuracy of 15-20%: /163
-

2ch -pr-0,67 (3.161) 

or  

h= 1,22.2c 
9 


It should be noted that the experimental data used by Seiff were obtained over the 
range of Mach numbers 0 < Me<4. 

A s  a result of the small number of experimental data and their low accuracy,
Seiff was not able to establish a relationship between the Reynolds analogy parameter 
2c /c and the Reynolds number, Mach number and temperature factor.h f  

Quite recently on the basis of analyzing experiments on the direct and simul
taneous measurement of the local values of the heat flux and friction, L. V. Kozlov 
[ 661 proposed the following more accurate dependence of the Reynolds analogy 
parameter on the parameters mentioned above: 

(3.162) 

With Tr/Te = 1, Me = 0 and Rexw = 4.73 x lo6, equation (3.162) reverts to equation 
(3.161), which is well confirmed by numerous experiments on the flow of incom
pressible fluids in pipes and over flat plates. 

Equation (3.162) was  obtained by L. V. Kozlov over the following ranges of the 
parameters: 1.7 \< Me< 4 ;  5 x 105 <Rem< 2 x lo7;  0.5 \< Tw/Tr \< 1. The effects 
of the individual parameters on the ratio 2ch/cf can be seen from Fig. 40, where, as 
in Fig. 39, all the curves were obtained by calculation from equation (3.162) with ch 
and cf determined for the conditions at  the edge of the boundary layer. 

From a consideration of Figs. 40 and 39 it follows that a s  the Mach and Reynolds
numbers increase the quantity 2c /c decreases, and approaches a value close to /164h f  -
unity. The fact that at large Mach numbers the Reynolds analogy parameter is close 
to unity is also indicated by the experimental data obtained by Hill on a flat plate for 
S\< Me< 10 (Fig. 41). As can be seen from Fig. 41, the value of the parameter
2ch/cf lies in the range 0.9 < 2c,,/cf .\( 1.1. 

The review of the experimental and theoretical data shows that in spite of certain 
advances in this field, the problem of the relationship between heat transfer and 
friction in general requires further theoretical and experimental work. 
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Figure 40. 

Figure 41. 

16. The turbulent boundary layer on a cone at zero angle of attack. 

Apart from flow close to a flat plate, the simplest case for theoretical analysis 
is flow along a cone placed at zero angle of attack, a s  long as the angle of the cone 
vertex is such that the leading shock wave remains attached (Fig. 42). In this case 
the motion of the gas after the shock wave is "conical", and the pressure on the 
surface of the cone is constant. This fact relates the flow in the boundary layer on 

/165a cone to the flow near a flat plate. A s  Van Driest has shown [671 , there is a simple -
approximate rule for converting the local friction coefficient on a plate into the cor
responding coefficient on a cone. 

In order to establish this rule, let us turn our attention to the integral momentum 
relationship (2.80). In the case of flow along a cone with an impermeable surface 

(vw = 0) this relationship assumes the form 

(3.163) 
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Here i t  must be remembered (see Fig. 42) that r
W 

= x sin e ; 0 is the half-angle of 

the cone. Equation (3.163) is easily transformed to the form 

Re, d Re,- Pw czd (Re" Re,). (3.164) 

where the parameter 5 is given by equation (3.8),  and the Reynolds numbers Rex 
and Re** are defined by equations (3 .18)  and (3.17).  

If it is assumed that the mechanisms of flow in the boundary layers around a 
cone and plate are the same (both are  gradientless flows, i. e. , dp/dx = 0), it can be 
expected that the functional relationships for  the velocity profile and momentum loss 
thickness on these bodies will also be the same. In this case, equation (3.152) can 
be used for the Reynolds number Re**, since this was obtained for the flat plate. If 
the rougher approximation is used (as in Section 12),  i. e .  , if the second term on the 
right side of equation (3 .52)  is discarded, we have 

(3.165) 

After substituting Eq. (3.165) into equation (3.164) and carrying out the integration 
to the same degree of accuracy as  in Section 12, an equation analogous to equation 
(3.57) is obtained for the cone: 

(3.166) 

Since the parameter 5 is equivalent to the local friction coefficient cf (see equation /166-(3.81)), i t  follows from a comparison of equations (3.166) and (3 .57)  that there is a 
simple rule according to which the local friction coefficient for a cone is equal to 
the value of this coefficientfor a flat plate calculated at a Reynolds number Rex equal 
to a half of this number for the cone, and the same values of the temperature factor 
and Mach number at  the outer edge of the boundary layer. 

If the local friction coefficients on a cone and plate are compared at the same 
values of the Reynolds number and the same values of the temperature factor and 
Mach number at  the outer edge of the layer, i t  is found that these coefficients are 
10-15% higher for the cone than for the flat plate. 

An analysis of the relationships between the local and averaged friction coef
ficients on a cone and plate by means of the integral momentum relationship and 
power relationships for the velocity profile and resistance law was carried out by 
Bradfield [ 69 1. A s  a result, the following relationship was obtained 

(3.167) 
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where l /n is the exponent on the expression for the velocity profile u / U ,  = ( ~ / 6 ) ~ ' ' ~ .  
When n = 7, equation (3.167) gives cfC/cfpl = 1.18, and when n varies over the range 

from 5 to 10, the ratio cfc/cfpl varied from 1.13 to 1.23. 

Figure 42. 

For the mean friction coefficient it was found that /167-
(3.168) 

When 5 < 71 < 10, it follows from equation (3.168) that 1.035 <cFc/cFpl< 1.065; 
when n = 7,  cFc/c Fpl = 1.05. 

Apart from this analysis, Bradfield's paper also gives the measured results for 
the local friction coefficients on a cone with a half-angle of 15O at a Mach number 
M = 3.7 and various values of the Reynolds number. The measured results are e 
shown in Fig. 43 (open circles); the solid circles indicate the results obtained by
Coles [361 on a flat plate under the same conditions, and the dashed line represents
the relationship cfc == 1.18cfpl. A s  can be seen from Fig. 43, the friction on the cone 

is about 28%higher than that on the plate. Obviously both Van Driest's rule and 
Bradfield's relationship (3.167) lead to friction values on the cone which are rather 
lower than those actually prevailing. 

Obviously more detailed conclusions on this problem can only be reached after 
further experimental data become available. 

17. The turbulent boundary layer in the presence of a longitudinal~ pressure drop. 

The problem of calculating the turbulent boundary layer in the presence of an 
arbitrary distribution of the longitudinal velocity at the outer edge of the layer in
cludes a particularly difficult part of this problem - the determination of the position /168-
of the point (or line) of separation. Even in the case of the flow of an incompressible
fluid this is fa r  from being completely solved. (See, for instance, [701). 
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Figure 43. 

The presence of compressibility and heat transfer effects between the gas and 
wall complicate this problem still further, leading to additional difficulties whose 
nature was described in the previous sections. Existing methods of calculating 
turbulent boundary layers in high-velocity gas streams in the presence of longi
tudinal pressure drops and heat transfer between the gas and wall are  usually 
generalizations and further developments of the methods for calculating turbulent 
boundary layers in incompressible liquids. A characteristic of most of these 
methods is the use of integral relationships (for momentum, energy, and moment of 
momentum). Usually the number of unknowns in these integral relationships ex
ceeds the number of equations. In these methods it is therefore very important to 
select a family of velocity and temperature profiles ~7hichcan be used for  substitution 
in the integral relationships instead of the actual other unlmowns. Under the present 
state of the theory, this selection presents a difficult problem. Apart from applying 
the Prandtl-von Kgrmgn semi-empirical theory of turbulence, it is sometimes possi
ble to use for describing velocity fields power-law type formulas with constant 1301 
or  variable exponents depending on various parameters. 

A detailed development of a semi-empirical method of calculating turbulent 
boundary layers in a gas in the presence of heat transfer and an arbitrary pressure 
distribution in the external stream has been given in the monograph by L. E. 
Kalikhman [ 711. In this method, which is based on applying the formulas of Prandtl’s 
semi-empirical theory, calculation of friction and heat transfer in the boundary layer 
is reduced to solving the linear differential equations, which are approximately
equivalent to the integral relationships for  momentum and energy; auxiliary tables 
and graphs a re  used to convert the functions found to those required (i.e. , the friction 
and heat transfer coefficients). 

Another method of calculating turbulent boundary layers on curvilinear surfaces 
which is essentially similar to the semi-empirical method is due to S. S. Kutateladze 
and A. I. Leont‘ev [ 721 ; this is based on applying the limiting laws for friction and 
heat transfer. 

The work of McLafferty and Barber [ 731 and Sasman and Cresci [ 741 can be 
mentioned as  examples of the semi-empirical approach to the present problem. In 
the latter of these papers the Ludwieg-Tillmann empirical formula from the theory of 
turbulent boundary layers in incompressible fluids is used as  the resistance law to 
establish the relationship between the resistance coefficient and the momentum loss  
thickness 8** and the form parameter H* =-= 8’3/8**:.  The generalization of this formula 

/ l69-
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to the case of flow with variable density was accomplished by the method of a defining 
temperature proposed by Eckert [ 751. In the work of Sasman and Cresci the 
characteristics of the turbulent boundary layer were obtained on the basis of 
simultaneously solving the integral relationships for the momentum and moment of 
momentum. 

Ofthe other methods proposed for calculating turbulent boundary layers in the 
presence of longitudinal pressure drops, mention can be made of the method developed 
by V. M. Ievlev [ 23, 761. 

Leaving the details to the original sources, it can be mentioned that the feature 
characteristic of most of the methods is the use of single-parametric families of 
velocity profiles. This fact is obviously one of the main reasons leading to the 
unsatisfactory nature of these methods of calculating boundary layers in the zones 
before separation. The development of two- and multi-parametric methods is in 
its early stages at present. 

Axisymmetric body Plane body 
Figure 44. 

On evaluating the state of this problem as a whole, it  can be stated that the 
existing methods for calculating turbulent boundary layers in supersonic gas streams 
with arbitrary pressure distributions in the external stream and heat transfer between 
the gas and wall lead to more o r  less satisfactory results only in cases when the 
longitudinal pressure drop does not have a large effect on the form of the velocity
profile. 

Bearing in mind what has been said above, we will confine ourselves here to a 
discussion of the method of calculation, in which allowance is made for the effect of 
the longitudinal pressure drop on friction only by means of the integral momentum 
relationship, while the direct effects of the pressure drop on the velocity profile are  
neglected. The assumptions made , as  shown by the experiments , are approximately 
valid for flows with negative or  small positive pressure gradients. The last limitation 
means essentially that pre-separation and separated flows have to be excluded from 
our consideration. 
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-- Methods of calculation based on linearization of the integral momentum relation
ship. -Let usconsider the flow along a curvilinear surface of a steady gas stream-
(Fig. 44). A curvilinear system of coordinates is used. The position of a point in the 
stream is characterized by the coordinate x measured along the surface from the 
stagnation point, and a coordinate y measured normal to the surface. 

Let us now return to the integral momentum relationship (2 .80) ,  which is the 
case of flow near an impermeable surface (v

W 
= 0) assumes the form 

(3.169) 

Later it is convenient to write equation (3.169) in rather different form, which is 
obtained after eliminating from the equation Mg by means of equation (2.79). Omitting 
the simple rearrangements, it is found finally that 

(3.170) 

Here 5 is given by equation (3 .8) .  

Following the example used in the work of L. E. Kalikhman to which reference 
was made earlier in this Section, a new variable is introduced: 

2 =z p , U e 6 * * p .  (3.171) 

The first term in the left-hand part of equation (3.170) can be rearranged using
equation (3.171) to the form 

(3.172) 

The notation is then introduced 

(3.173) 

By using equation (3.172),  the integral momentum relationship (3.170) becomes 

(3.174) 
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It is appropriate to note that the differential equation (3.174) for the function z is as 
exact as the initial equation (3.169). 

Before passing on to the problem of considering the integration of equation (3.174),
it is necessary to establish the dependence of the parameters A and H* which appear 
in this equation on the unknown function z. In order to establish this relationship it 
is necessary to have a resistance ‘lawTT,i. e. , a relationship between the momentum 
loss thickness 6** and the friction 5 .  Since we are here considering only flows in 
which the direct effect of the longitudinal pressure gradient on the shape of the 
velocity profile is small, i t  is obvious that i t  is possible to use as the resistance 
law the one established in Section 12 for the flat plate (3.52).  It is only necessary to 
bear in mind that the parameters Ue(x), w (x), p ( . I . ) ,  etc. , at the outer edge of the 
boundary layer will be variable quantities in the case now being considered. The 

expression for the resistance law is used, as  in  Section 12, neglecting for 
sake of simplicity the second term in the square brackets in equation (3.52).  In 
order to compensate for the e r ror  introduced by this approximation, a constant C1 is 

introduced in the resistance law; a suitable choice of this constant makes the results 
obtained more precise (it should be mentioned that von K6rmgn used a similar 
approach in deriving the resistance formula (3.59)).  The resistance law transformed 
in this way has the form 

c, r-c, -z2-. (3 .175)f 

where the quantity 1(1) is given by equation (3 .54) ,  and o and p , which appear in 
equation (3.54) are given by equations (3 .48)  and (3 .49) .  

By substituting the expression for the momentum loss thickness (3.175) into 
equation (3.174),  a relationship is obtained between the function z and the friction 
parameter 5: 

(3.176) 

A s  equation (3.176) shows, the dependence of the friction parameter 5 on the 
function z is essentially logarithmic, which makes it possible to confine our attention 
to approximate methods of evaluating the function z(x). In consequence, in calculating 
the parameter H* i t  is possible to use the expression for the flat plate (3 .55) ,  which 
is satisfactory within the limits of the approximate approach being used here. 

The expression for the function A ,  equation (3.173) assumes the following form 
after substituting the resistance law (3.175) into it: 

(3.177) 
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The dependence of the functions H* and A on the friction parameter 6 ,  and 
consequently through equation (3.176) on the unknown function z, leads to the 
integration of the very complex non-linear equation (3.174) in order to establish 
this function. There are  grave difficulties in integrating this equation exactly, and 
this is not necessary, as  will be shown below. Simplifications can be effected as a 
result of the fact that the functions H* and A depend only very slightly on the friction 
parameter 6 .  This fact makes i t  possible to confine our attention to the approxi
mate determination of H* and A at values of the parameter 5 calculated from the 
formula for the flat plate (Section 12). A s  regards the parameters J3 and w (see
equations (3.48), (3.49)), on which (together with the parameter '5.)  H* and A depend,
their values can be evaluated at each cross-section of the boundary layer from the 
local values of the Mach number Me and the temperature factor Tw/Te. Thus, be

fore starting the integration of equation (3.174),  the functions A and H* can be re
garded as known functions of the longitudinal coordinate x. 

This approximate method of determining the parameters A and H* should not 
lead to appreciable errors  in the determination of the function z(x) using equation /174-
(3.174),  according to the evaluations carried out below. 

Let us determine the value of the parameter A for the case of flow of an incom
pressible fluid along a flat plate under isothermal conditions. By noting that in this 
case I(1) = 1 and using the resistance formula (3.80),  i t  is found from equation (3.177) 
that 

(3.178) 

It follows from equation (3.178) that as  the Reynolds number changes by two orders 
of magnitude (from l o 5  to lO7), the value of A will change by 6% (from 1 .25  to 1 .18) .  
In the general case of flow of a compressible gas in the presence of heat transfer 
between the gas and the wall, the variation of the parameter A will not be too great 
under real conditions. 

The results of calculating the parameter H* according to equation (3 .55)  for the 
case of flow of an air stream along a flat plate with 

Me = 1.69, T, , /7 ' ,  =: 1.66 and M e  7~ 2.27, T W I T ,= 2.15 

are  shown in Fig. 27. The experimental points obtained by Pappas for these same 
flow conditions are  also shown. It is clear from Fig. 27 that the parameter H* de
pends only very slightly on the Reynolds number, and consequently on the friction 
parameter 5 .  The fact that H* depends only feebly on the parameter 5 is well con
firmed by experimental data in the case of flow of an incompressible liquid along a 
flat plate. Thus ,  the measurements of Schlutz-Grunow [77! and Hama [781 on smooth 
plates showed that as  the parameter to varied from 18-30, the parameter H* changed 
from 1 . 5  to 1.25 .  The results of applying equation (3.55) to the flow of an incom
pressible fluid also gives satisfactory agreement with the experimental data. 
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The results of this analysis for determining the parameters H* and A can be /175
represented in the form 

! 
(3.17 9) 

In these equations the subscript pl indicates that the quantities on which i t  appears 
are determined from the formulas obtained for flow along flat plates. 

If the approximate method of determining the parameters H* and A given in 
equation (3.179)is used, the problem of determining the function z(x) is reduced 
to integrating the following linear, 1st-order differential equation with variable 
coefficients : 

-dz + P ( x ) z =; @ (x), 
dx (3.180) 

where 

(3.181) 

On integrating equation (3.180) it is found that 

Here  xt is the coordinate of the point of transition from a laminar to a turbulent 

boundary layer. The integration constant C is determined as usual from the con
dition that the values of the momentum loss thickness a:;:*: at the transition point 
must match. As a result, i t  is found that /176-
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in which the parameters cl and 6;' a re  to be determined from laminar boundary 
layer theory. 

If the laminar section is absent (6;' = 0 when xt = 0), equation (3.183) can be 
somewhat simplified to 

(3.184) 

The quadratures appearing in equations (3.183) and (3.184) can be obtained 
numerically or by graphical integration. 

In the flow along a flat plate at zero angle of attack (due/& = 0,  Y = 0), 

equation (3.184) can be converted by applying (3.181) and 3.177) to 

(3.185) 

In the case of the flow of an incompressible fluid the expression (3.178) can be 
used for A, after which the integral in the right-hand side of equation (3.185) 
can be easily evaluated, giving 

z,, 2= peUex (1 -1- O,G2 Rex-l/lJ). (3.186) 

A s  the Reynolds number (Rex) varies from 105 to l o 7 ,  the expression in round 
brackets in equation (3.186) changes from 1 .27  to 1.20 .  A s  a result, to a 
sufficiently high degree of accuracy i t  can be assumed that 

ZQ = 1,24peUex. (3.187) 

Once equation (3.183) (or equation (3.184)) has been used to determine the /177-
distribution of the parameter z(x) over the surface of the body, it is possible to 
find from equation (3.176) the dependence of the friction parameter f; on the 
longitudinal coordinate, and then to find the friction coefficient cf (x)by means 
of equation (3.8).  However, it  is inconvenient to use equation (3.176) directly, 
due to the necessity of solving a logarithmic equation. In order to simplify the 
process of calculating the friction it is necessary to carry out certain trans
formations on equation (3.176). 

By taking logarithms of equation (3.176) and converting from F; to cf using 
equation (3 .8) ,  it is found that 
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By carrying out some simple operations in this equation and introducing the no
tation 

(3.188) 

it is found that 

(3.189) 

The value of the constant C3 is determined from the condition that equation 

(3.189) must agree with von K6rmh 's  formula (3 .59)  for a flat plate in an incom
pressible fluid. By makinguse of equation (3.187) and carrying out this matching 
of equations (3.189) and (3 .59) ,  it is found that C3 = 0 .30 .  Equation (3.189) can 
then be reduced to an equation with one parameter. If both sides of this equation 
a re  divided by two, and lg (0.121K) is added to both sides, it is found that 

(3.190) 

where 

If equation (3.191) is rearranged to extract cf, it is found that /178-

(3.192) 

The determination of the function N from equation (3.190) when the right-hand 
part is known can be carried out with tables of logarithms to base ten. 

A still greater simplfication of the calculation procedure can be achieved 
by replacing the left side of equation (3.190) by a simpler approximate expression. 
Calculations show that over the range of values of N from 1 to 4 (which in flow 
over a flat plate corresponds to the following changes in the Reynolds number, 
Mach number and temperature factor: I O 5 <  Re, < I O 3 ;  0 < Me< 10; 0.1 < T, /
T,=<-1) it is possible to represent the left-hand side of equation (3.190) with 
sufficient accuracy by 

N + Ig A' = 0,15 + 1,2N. (3. 193) 
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The maximum er ror  involved in this approximation is 5%at N = 1,  and the mean 
er ror  varies from 2 to 1%. 

By using equation (3.193), the following expression is obtained after some 
computation for the friction coefficient instead of equation (3.192): 

(3.194) 

In concluding the discussion of this method of calculation, it can be noted 
that one of the functions which govern the friction (N) is related to z by a relation
ship which is close to logarithmic. This fact justifies the approximate method 
assumed here for determining z on the basis of linearizing the integral momentum 
relationship. 

To conclude, a brief list of the main steps in the calculation according to 
this procedure is given below: 

1. The quantities (x)and w(x) are determined from equations (3.48) and 
(3.49) for the given parameters of the external stream (Me(x) and Te(x)) and the 

conditions at the wall (T ). The recovery coefficient r in equation (3.49) can be /179-W 
assumed equal to 0 .89 .  

2.  From the known values of p (x) and w(x) and the local value of Reynolds
number Rex = U.p..r/p, and equation (3.85),  the local friction coefficient on a 
plate c 

f Pl 
is calculated, from which the friction parameter 5 

Pl 
(x) is obtained by 

using equation (3 .8) .  In passing, the functions required subsequently are  also 
determined: I(1) (equation (3.54)) and K(x) (equation (3.79)).  The ratio of 
densities p L C / p cis determined from equation (3.50),  and the viscosity from 
equation (3 .61). 

3.  The values of H*(x) and A(x) are  determined from the known values of 
p (z), 01 (z) and 5,

Pl 
(x) using equations (3. 55) and (3.177).  

4. The coefficients P(x) and Q(x)are  calculated from equation (3.181). To 
do this the values of Ue(x), U;(x), rw(x) and r' (x)must be known. 

W 

5. The function z(x) is calculated from relationship (3.183) (or(3.184) if the 
laminar and transitional zones of the boundary layer are absent). The quadratures
appearing in equation (3.183) (or (3.184)) a re  determined numerically, or by 
graphical integration. 

6. The distribution of the local friction coefficient cf(x) along the surface 
of the body is then calculated from equation (3.194). If the friction coefficient is 
to be determined from the more precise formula (3.192), it is necessary in ad
vance to calculate the function N(x) from equation (3.190) from the known value of 
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the right-hand side. The solution of equation (3.190) is carried out by using tables 
of logarithms to base ten. 

The following quantities must be given in the form of initial data: ue(x), 
U;(x), rw(x), r;(x), Te(x) and Tw. Instead of the quantities Ue(x) and UT(x), ite 
is possible to give the Mach number at the outer edge of the boundary layer 
M (x)and its derivative with respect to the longitudinal coordinate, M;(x), whiche 
are related to the velocities through equation (2.83). 

From the distribution cf(x) obtained as  a result of the calculations i t  is 

possible to derive the friction coefficient evaluated on the basis of the parameters 
of the approaching stream: 

(3.195) 


The method of successive approximations. On the basis of the same initial /180-premises as in the previous method, i. e. , considering only the flow with an 
averaged longitudinal pressure drop, the following method of calculation can be 
proposed on the basis of a simple transformation of the integral momentum re
lationship to a form which makes i t  possible to calculate the friction by the method 
of successive approximations. A similar transformation was first  used in the 
work of K. K. Fedyaevskiy and A. S. Ginevskir [ 791 for calculating friction in a 
turbulent boundary layer of an incompressible fluid; it was then used by Yu. V. 
Lapin for calculating friction in compressible gases [SO]. 

Let us return to the momentum equation (3.170). By introducing into this 
equation the new variables 

(3.196) 


it  is converted to the form 

(3.197) 


By integrating equation (3.197)and then converting from 0 to a**, it is found 
that 

(3.198) 
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where the subscript t denotes parameters *?tthe transition oint from a laminar 
to a turbulent layer, so that the quantity 6t  is determined From laminar boundary 
layer theory. 

On substituting the equation for the momentum loss thickness (3.175) into the /181
left part of (3.1981, it is found then that 

When logarithms are  taken in (3.199)and a conversion from 5 to cf is made by 
using equation (3.8), the following relationship is obtained after several simple 
rearrangements: 

P,242K-v.t = c3+ E ,  (3.200) 

where K is given by equation (3.79) and the function E, which itself involves the 
unknown friction coefficient cf, has the form 

(3.201) 


The value of the constant C3 can be taken to be the same as in the previous 
section, i. e., C3 = 0.3. Bearing this in mind, it is not difficult to obtain from 
relationship (3.200)the following expression for the friction coefficient: 

0,2421 a 
Cf = (m) (3.202) 

When the laminar and transitional zones of the boundary layer are  absent 
(q= 0; = 0) the expression for the function E is simplified and assumes the 
form 

(3.203) 


The exponent Q ,  which is given by the second of the equations in (3.196), contains 
the parameter II* 2= 6*/6"*. A s  in the previous method the calculation of this 
parameter can be carried out by equation (3.55). 

Equation (3.202)makes it possible to use the method of successive 
approximations for calculating friction. As the zeroth approximation for the 
friction coefficient cf it is natural to take the value of this coefficient for the 
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flat plate, i. e., c p )  = c
f pl' 

The calculation of c 
f Pl 

for given parameters at the 	 /182-
outer edge of the boundary layer can be carried out by the method discussed in 

Section 12. After determining cp)(x),  the following quantities a re  determined in 
turn: 5(o)(s)by means of equation (3.8),  H*(0)from equation (3.55) Un)(x) from 

equation (3.196), E0(x)from equation (3.201) (or (3.203)),  cf(1)(x)from equation 
(3.202), etc. 

The fact that the unknown function cy occurs in the right-hand side of equation 
(3.203) within the integral and logarithm signs ensures that the iteration process 
usually converges rapidly. 

In conclusion, i t  can be noted that a s  the calculations have shown, both the 
methods proposed in the present Section for calculating turbulent boundary layers 
(the method based on linearization of the integral momentum relationship, and 
the method of successive approximations) lead to similar results. Tests of the 
use of these methods for calculating friction coefficients in the pre-separation 
zone of flow showed that in these cases the friction coefficients are  appreciably 
overestimated. 

18. The turbulent laver on a mhere 

Among the bodies with various shapes of the front sections, the greatest 
interest to engineers and investigators centers around bodies with spherical 
surfaces. This interest arises because of the wide occurrence of blunt shapes
in practical structures in aviation equipment. One of the main advantages of blunt 
bodies over pointed shapes is that the specific heat flux to a blunt body is signifi
cantly smaller than on a sharp body. For laminar flow conditions in the boundary 
layer in the neighborhood of the forward stagnation point, the heat flux to the wall 
appears tgbe inversely proportional to the square root of the radius of curvature: 
q w  - UVR. 

At present the problem of flow in a laminar boundary layer in the neighbor
hood of the forward stagnation point of a blunt body at supersonic velocities has b 3 3  
been studied very thoroughly both experimentally and theoretically. 

Much less work has been done on turbulent flow on blunt bodies along which 
supersonic streams flow. This is explained by the fact that at the forward 
stagnation point and in its immediate vicinity the flow conditions in the boundary 
layer always remain laminar because of the small values of the Reynolds number. 
If the laminar nature of the flow is also retained further along the flow contour, 
the maximum value of the heat flux is reached at the forward stagnation point. 
However, the existing experimental data show that the laminar nature of the flow 
in the boundary layers on blunt bodies is not always retained further away. In 
particular, the experimental data of Stetson [ 8 l l  indicate the possibility of a 
transition of the laminar layer into a turbulent one in the neighborhood of the 
sonic point (line) (the sonic point (line) is the name given to the point (or line) at 
which the velocity at the outer edge of the boundary layer becomes equal to the 
local velocity of sound). In this case, the maximum heat flux occurs in the 
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vicinity of the sonic point (line). This is the reason for the existence of particular
interest in turbulent boundary layers on blunt bodies. 

Of the wide class of bodies with blunt shapes, the flow patterns close to bodies 
with spherical surfaces have been most studied. A schematic representation of the 
flow picture close to a sphere is given in Fig. 45. During the flow of a supersonic 
stream around a spherical body a detached shock wave is formed ahead of it. In 
passing through the shock wave in the neighborhood of the forward stagnation the 
stream is slowed down to zero velocity, and is then accelerated close to the body,
reaching the local velocity of sound at  some line (the sonic line). Experiments and 
theoretical calculations show that the sonic line occurs close to the point with 
the angular coordinate 6 = 45". 

Theoretical calculations of the flow close to the forward stagnation point 
on a sphere have been carried out in particular by Li Ting-Yi and Geiger 1821; 
experimental studies have been made by Korobkin and Gruenewald [ 83 1 .  As a 
result of the investigation of Li Ting-Yi and Geiger it was found that the velocity
gradient of the external stream at the forward stagnation point on a sphere is 

(3.204) 

where Rs is the radius of curvature of the body at the forward stagnation point; 
pm is the gas density in the approaching stream (before the density jump); ps is the 
gas density after the density jump line. It follows from the theory of density jump 
lines that the ratio of densities before and after the density jump line depends on 
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the Mach number of the approaching stream, and is given by the equation 

Figure 46 shows the results of calculating the parameter 2Rs/Um 

from equations (3.204) and (3.205). The experimental data of Korobkin and 
Gruenewald are  also shown. The agreement between the theory and experiments 
can be regarded as  good. 

It can be seen from Fig. 47 that as  the Mach number MODincreases, the 
parameter 2R /U

S O D
(dUe/dx)s tends asymptotically to some limiting values which 

depends on the value of the adiabatic factor Y .  

Angular coordinate, Z? 

degrees 
Figure 46. 

FL. 

Figure 47. 
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It should be noted that for Mach numbersM, > 4 i t  is possible to calculate the /185
value of the parameter (dUe/dx)s very accurately using an improved form of 
Newton's formula 841. In this case, the velocity gradient at the critical point is 
given by the equation 

(3.206) 

Aoart from the value of the velocity gradient at the forward stagnation point, 
in our-case it is also of interest to determine the change in the stream velocity 
along the surface of the sphere, particularly in the region of the sonic point. 
Experimental data on the velocity distributions along spheres were obtained by
Korobkin and Gruenewald over the range of Mach numbers in the approaching 
stream of 1 .22  to 4 .87  (Fig. 46),  and these indicated that the dependence of the 
velocity on the longitudinal coordinate was close to linear: Ue-x. The velocity 
gradient along the surface of the sphere appears to be very similar to the value of 
this parameter at the stagnation point. From evaluations carried out by Sibulkin 
[851,  the differences in the velocity gradients at the forward stagnation points do /186
not exceed 3% (at Y = 1.4). All  the data presented make it possible to conclude 
that the velocity distribution of the stream along the sphere surface 0 < 6 < 00') 
can be well described by the linear relationship: 

The quantity (dU /dx) can be determined either from equation (3.204) or from e s 
the graph s h m n  in Fig. 47,  or from equation (3.206) if the Mach number is 
M, > 4.  

Calculation of friction on a sphere. Let us now proceed to the calculation of 
the distribution of friction along the surface of a sphere. For this purpose a 
method of calculation is used which is based on linearization of the momentum 
equation (Section 17), with some preliminary simplifying assumptions relative to 
the behavior of the parameter H* and the function A; these a re  regarded as  
constant quantities. By considering equations (3.55) and (3.173) it  is not dif
ficult to arrive at a basis for this simplifications. Actually, i t  follows from 
results of analyses carried out in the previous Section that the quantities H* and 
A dependveryslightly on the friction parameter 5 .  It can therefore be expected
that if the compressibility parameter j3 and the heat transfer parameter w (see 
equations (3.48) or (3.49)) vary little along the surface, then H* and A will also 
vary little. In the present case of friction on a sphere, the compressibility 
parameter p is small, since the Mach number at the outer edge of the boundary 
layer does not exceed the value of 1 . 5  to 2. The previously mentioned fact that 
the Mach number Me reaches a value equal to unity at the point with the angular 
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coordinate 6 = 45" is important in this connection. It follows that the effect of 

the compressibility parameter on the values of H* and A will be small. A s  re

gards the heat transfer parameter w ,  its value may be quite large. However, if 

the wall temperature is constant, the change in the value of this parameter along 

the surface of the sphere will be insignificant, since the temperature at the outer 

edge of the boundary layer along the sphere changes little. Thus, in the present 

case of flow close to a sphere there is every reason to assume that the quantities 
/187
H* and A are  constants. If i t  is assumed approximately in addition that rw (x)=; 5, 

the coefficients P(x) and Q(x)in equation (3. BO), whi ch a re  given by equation 
(3.181),  assume the form 

(3 .207)  

By substituting the values of these coefficients into the expression for the function 
z (equation (3.183)), it  is found after evaluating the quadratures that 

(3.208) 

If the laminar and transitional sections of the boundary layer a re  absent (xt = 0,  

Uet = 0) ,  equation (3.208) can be somewhat simplified, and assumes the form 

(3 .209)  

Once the function z(x) has been obtained, i t  is not difficult to use equations 
(3.192) or  (3.194) of the previous Section to calculate the distribution of the sur
face friction coefficient cf(x). 

For a completely turbulent boundary layer the following expression can be 
obtained for the local friction coefficient after substituting equation (3 .209)  into 
equation (3.194): 

where 

(3.210) 

(3 .211)  

and the quantities K,  H* and A are  given respectively by equations (3.188),  
(3.55) and (3.177). 
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For convenience in carrying out calculations, Fig. 48 gives the relationship 

between the POUP (2 : A c m and the temperature factor Tw/Te for Mach num

hers Me = 0.2. The nature and limits of this complex confirm the assumptions /188-
made as to the constancy of the quantities A and H*. It should be noted that the 

A 
group A c2+ fIy) + depends not only on the parameters Tw/Te and Me, but also 
on the Reynolds number. However, this dependence appears to be extremely 

feeble, and so the graphs shown in Fig. 48 (constructed for Rex = lo7; r = 0.89) 
can be used with a high degree of accuracy over a wide range of Reynolds numbers 

5 9(approximately from 10 to 10 ). 

Figure 48. 

Figures 49 and 50 show the results of calculating the distributions of some 
of the parameters and the local friction coefficients on the surface of a sphere 
for  various flow conditions*. 

The calculations whose results a re  shown in Fig. 49 were carried out for the 
conditions of flow around a sphere of diameter d = 2 m in the case of a gas stream 
with a Mach number Moo = 3 at a height of 20 km (with respect to standard 
atmosphere). The surface of the sphere is assumed to be thermally insulated. 
These figures show the distributions of the Machnumber Me and the Reynolds number 
Re (see equation (3.211)) at the outer edge of the boundary layer. The variation 

X 
of the Reynolds number is characterized by the presence of a maximum, caused 
by the fact that in the initial section the predominant factor governing the increase 
of the Reynolds number is the increase of the longitudinal coordinate x, while 

*The calculations were carried out at the request of the author by G. V. 
Semenova. 
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in the subsequent sections it is the gas d@nsityp ,  which decreases sharply as a 
result of the isentropic expansion of the stream along the sphere surface. Figure 
49 also shows the distribution of the local friction coefficient cf on the surface of 
the sphere (see equation (3.210)), and the distribution of cf a  (see equation 

/189
(3.195)). The curve for the variation-of the friction coefficient c
f Pl is also 

shown;this is calculated from the flat-plate formulas for local values of the 
Mach number Me and the Reynolds number Rex at the outer edge of the boundary 
layer. 

8" #" 

Figure 49. Figure 50. 

Figure 50 shows the analogous results obtained for calculations of the flow 
around a sphere of diameter d = 1.07 m of a stream'with a Mach number 

= 11 at a height of 25 km and with a value of the temperature factor 

Tw'Teo = 0.327 (Teo is the stagnation temperature). 

It can be seen from Figs. 49 and 50 that in both of the cases considered for 
defined in terms of theflow around a sphere, the local friction coefficient cf 

parameters of the approaching stream (see equation (3.195)) reaches a maximum 
in the zone of the flow adjacent to the sonic line. 

Calculation of heat transfer on a sphere. After determining the friction coef
ficient by the method described above it is possible by applying Reynolds analogy 
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(equation (3.144)) to obtain the local heat transfer coefficient (Stanton number). /190-
By using Reynolds analogy, the expression obtained for the local heat flu is 

(3.145) 

Here S ( l )  and r are  the Reynolds analogy parameter and the recovery coefficient. 
The values of these parameters can be obtained from equations (3.150) and (3.159). 
When these formulas and equation (3.207) are  used, the following expression is 
obtained for the heat flux on the sphere: 

(3.212) 

Apart from this method, there is a whole series of other approximate methods 
of calculating heat transfer on spherical surfaces. The results of some of these 
are  given below: 

Van Driest r 86 1 used a power-law type velocity profile with an exponent of 
1/7, and obtained the following expression for the Iocal heat transfer coefficient: 

cllm -=0,053-Pr 

where the heat flux is given 

(3.214) 

It should be noted that equation (3.213) was obtained under the assumption that 
the turbulent boundary layer started at the forward stagnation point. 

Arthur and Williams 871 used van Driest's formula (3.213) and a power
dependence of viscosity on temperature, p - and the assumption that there /191-was an isentropic distribution of gas around the surface of the sphere, and found 
that in this case the maximum value of the heat transfer coefficient (cha, )max 
is reached at the point x/d = 0 .322 ,  which corresponds to the angular position 
19. = 37". The maximum heat flux for Pr = 0 . 7 5  appears to be equal to 

where the subscript s denotes parameters a t  the forward stagnation point. 
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Sibulkin [851 investigated heat transfer at the sonic point, and obtained an 
expression equivalent to equation (3.213). Like van Driest, Sibulkin used a 
power-law velocity profile. For calculating the friction, he used the power 
formula of Blasius, which is widely used in the theory of turbulent boundary 
layers in incompressible fluids, in which the flow parameters were evaluated by
the nominal temperature method of Eckert 751. 

In concluding the present section we will give the formula for calculating 
turbulent heat transfer in the neighborhood of the sta ation point of an axisym
metric body which was proposed by V. S. AvduevskiyY881: 

kcal (3.216) 
Pr o , ~ (T ,  -- Y',',) -2 'm hr  

Equation (3.216)was obtained by solving the integral energy relation using the 
experimental relationship between the heat flux and local characteristics of the /192-
boundary layer established for a flat plate. In deriving equation (3.216)it was 
assumed that pe (4 :. wrist. 

0 75 <78 $5 I;; 75 90 
ire 

Figure 51. 

Figures 51 and 52 present the results of calculating the heat transfer coef
ficients ch and cha, on the surface of a sphere for the flow conditions indicated 

in the explanations of Figs. 49 and 50 respectively. The local heat transfer coef
ficient ch, defined in terms of the parameters a t  the outer edge of the boundary 
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layer (see equation (3.143)) was calculated according to equation (3.159). The 
local heat transfer coefficient choo is defined by the relationship cha, = 
'c ?e u,
h Z L ' , '  

Figure 52. 

Figures 51 and 52 also gives the distribution of the local heat transfer 
coefficients chao obtained from van Driest's formula (3.213). As can be seen 
from the figures, the two methods lead to similar results. The maximum heat 
transfer rate occurs close to the sonic line. 
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calculating turbulent 

CHAPTER N. 

THE TURBULENT BOUNDARY LAYER IN DISSOCIATING GASES 

19. Some remarks on the thermodynamic properties of air at high.temperature* ~ - - .. - /193 

The increase in the velocities of flying equipment from small subsonic to 
moderate supersonic velocities has made it necessary to take into account the 
dependence of the gas density and transport properties (viscosity and thermal 
conductivity) on temperature in calculating these motions. The specific heat 
capacity of air at high temperatures increases as a result of disturbances of the' 
vibratory degrees of freedom (Fig. 53). However, if the temperature difference 
in the boundary layer is not very large, it is possible in carrying out approximate 
calculations to assume that the heat capacity of a i r  is constant, with the value 
corresponding to some mean temperature of the stream. 

layersMethods of of different shapes based onon bodies boundary 
:cwthe assumption of constancy of the gas heat 

capacity have been considered in the previous $ q2J 4 
; 

,
: Im

chapter. BQ26 1
I 

- I . I ' 
oa ! ~ i i 

Any further increase in the velocities of @'b 40U ~4%' 
L - L--.JJ tGC0 2UOU ZJ,U /194

flying equipment is accompanied by such in- t, o c  

creases in the gas temperature that in addition 

to variation of the density and transport coef- Figure 53. 

ficients, the necessity may arise to take into 

account the dependence of the heat capacity on 

temperature. In this case, it must be remembered that the absolute value of the 

temperature is not of primary importance, but rather the temperature drop in 

the boundary layer (in other words, the difference between the maximum and 

minimum temperatures). The calculation of gas flows with variation of the heat 

capacity can be carried out both on the basis of the generalized methods con

sidered in the previous chapter (in many cases, such generalizations can be 

formally reduced to a replacement of temperatures by enthalpies) and by using 

methods which will be developed in the present chapter. 


. 

* For details of the thermodynamic properties of gases at high temperatures, 
see 1891. 
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Figure 54. 

The transition to hypersonic velocities causes such large increases in the 
gas temperature that thermochemical processes can begin to occur in the gas; 
these include dissociation of the gas molecules, ionization of atoms, and the 
formation of oxides, radiations, etc. Figure 54 gives a representation of the 
effects of these processes on the ffeffective" heat capacity of air under equili
brium colsditions [go]; the graphs give the dependence of the heat capacity c

P 
on 

temperature at various pressures (the "effective" heat capacity usually means 
the heat capacity at which,together with the usual heat capacity, the thermal 
effects of the thermochemical processes occurring in the gas are taken into 
account). 

Figure 55, which is taken from the same work by E. V. Stupochenko et al., 
gives the calculated mole concentrations under conditions of thermodynamic equi
librium of the molecular and atomic components of air and electrons as functions 
of the temperature at three values of the pressure, p = 0.001, 1and 1000 atm. 
A s  can be seen from Fig. 55, at high temperatures a i r  represents a multicom
ponent mixture consisting of molecules of oxygen 02,nitrogen N2,nitric oxide 
NO, atoms of oxygen 0, nitrogen N, argon A r ,  and electrons e-. In addition to 
these components in the mixture there a re  positively charged ions of oxygen Of, 
nitrogen Nf,nitric oxide NO+ (the concentrations of these components is not 
shown in Fig. 55). 

Over wide ranges of temperature and pressure the concentrations of argon
and nitric oxide do not exceed 1%, so that in carrying out approximate calculations, 
the presence of these components can be neglected. 

Calculations of the equilibrium state of air show [91] that as a result of the 
considerable difference in the dissociation energies of oxygen and nitrogen (5.08 
ev for 0, and 9.756 ev for N2), the dissociation of oxygen in mainly completed
before the beginning of the dissociation of nitrogen. In addition, because of the 
high ionization potentials for oxygen and nitrogen (13.62 ev for 0 and 14.55 ev for 
N) the dissociation of the molecules of oxygen and nitrogen is essentially complete 
before ionization of the 0 and N atoms begins. 

-
D 9 5  
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Figure 55. 

These features of the chemical reactions occurring in air at high tempera
tures makes it possible to distinguish approximately several temperature and 
pressure zones for each of which one o r  other of the reactions ic  characteristic 
(Fig. 56) *. The separation into zones as indicated in Fig. 56 makes it possible 
to greatly simplify the calculation of air flows at high temperatures. 

*Figure 56, which was compiled by Hansen, is to be found in the book by 
Dorrens [92]. 

158 


.... .. 



Figure 56. 

In the present chapter we will consider methods of calculating turbulent 
boundary layers for the flow regimes in which the effects of ionization processes 
can be neglected (see Fig. 56). 

_. 20. Some infognation- on the kinetics of chemical reactions 

In the present section some of the information required in the subsequent
development on the formal kinetics of homogeneous chemical reactions will be 
given [93], in particular, information on the kinetics of the dissociation reactions 
of the main constituents of air (oxygen and nitrogen). Here we will also give a 
description of the model of the "ideal dissociating gas" proposed by Lighthill [94] 
which has been widely used in gas-dynamic investigations, as well as the model 
of the partially disturbed dissociating gas. Brief information will also be pre
sented on the kinetics of heterogeneous (surface) chemical reactions. 

Some definitions. The processes of chemical interaction between part icles 
in a gas-mixture are  the result of collisions of the reacting particles. Depending 
on the type of system in which the reactions occur, they may be of two types,
homogeneous and heterogeneous. 

Reactions occurring in a single medium (for instance, in a mixture of 
reacting gases o r  in a solution) are  termed homogeneous. Usually homogeneous
reactions are taken to mean those occurring in a finite volume of gas, solution, 
etc. ; if the gases participating in the reaction are contained in a vessel, the rate 
of a homogeneous reaction is independent of the size of the vessel surface. The 
dissociation reaction of molecules of oxygen and nitrogen at high temperatures 
can be regarded as an example of a homogeneous reaction. 

Reactions occurring in a nonhomogeneous medium, on surfaces adjacent to 
the reacting materials, a r e  termed heterogeneous, as are those in which the 
reactants are in different phases, for instance, solid and gaseous (reactions of 
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recombinations of atoms on catalytic walls), liquid and gaseous (reaction com- /199
bustions of hydrocarbons on surface films of melts of certain materials used for 
the thermal protection of space equipment), etc. Heterogeneous reactions usually 
include all those reactions occurring in narrow zones (compared with the volume 
occupied by the gas) such as might occur in the contacting of previously unmixed 
reacting gases. In the limiting case, when the rate of the chemical reaction is 
infinitely large compared with the rate of diffusion (the rate of supply and re
moval o r  reagents and reaction products), this zone can be regarded as a sur
face (the reaction front). A s  an example of such a reaction it is possible to give 
the case of the oxidation (combustion) reaction of a gaseous fuel during the flow 
of an air stream heated to a high temperature around a carbon wall. In this case, 
the gaseous carbon formed a s  a result of sublimation of the solid carbon diffuses 
from the wall surface to the outer edge of the boundary layer against the oxygen, 
which is diffusing in the opposite direction. If the temperature in the boundary 
layer is sufficiently high, the rate of the oxidation (combustion) reaction of the 
carbon will be very large, and the reaction zone (combustion front) will be so  
shallow compared with the thickness of the boundary layer that such reactions 
can in practice be regarded as heterogeneous reactions. 

A reaction is termed endothermic if  it proceeds with the absorption of heat 
(for example, the dissociation reaction of oxygen molecules), and it is termed 
exothermic if it proceeds with the liberation of heat (for example, the recombi
nation reaction of oxygen atoms). 

The law of mass action. Each chemical reaction proceeds according to a 
law of constant proportions, and in the general case can be described by the fol
lowing stoichiometric equation: 

(4.1) 

- k  and v f fk are the stoichiometric coefficients for the reagents (prime) and -where v BOO 
the reaction products (double prime), respectively. The A k f s  are  the chemical 
symbols of the reacting materials; N is the total number of chemical components; 
k' and k" are the rate constants for the forward and reverse reactions, respec
tively, which are functions of temperature. 

The main relationship describing the rate of a chemical reaction (the rate 
of formation o r  consumption of the ith component is the relationship given by the 
law of mass action. According to the law of mass action, the rate of formation 
of a chemical material is proportional to the product of the concentrations of the 
reacting materials, and each of the concentrations appears raised to some power 
equal to the stoichiometric coefficient. According to this law, the rate at which 
the reaction proceeds from left to right for the equation of the chemical reaction 
described above can be represented in the form 
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while the rate of the reaction from the right to left is given by the equation 

Here [nil denotes the number of moles of component i per unit volume. The 
derivative d[n.]/dt expresses the rate of change of the number of moles of the ith 

1 

component per unit volume as  a result of the occurrence of the chemical reaction, 
It should be noted that equations (4.2) and (4.3) are  written for calculations on the 
basis of 1 mole. 

If the reaction is such that the reactants are  present on the left and right of 
the reaction equation, the expression for the reaction rate can be written as 

These equations are  written for calculations with ( Y’!1 - Y ! )  moles.1 


The overall rate of formation of the ith component will be equal to the dif
ference between the rates of the forward and reverse reactions: 

A t  chemical equilibrium there is no change in the composition of the medium, 
i. e. , the rates of the forward and reverse reactions become equal (d[ni] /dt = 0); 

in this case, therefore: 

where KJT) is the equilibrium constant, and the superscript e denotes the equili
brium value of [nk3. 
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Equation (4.7) is the most general equation for determining the composition 
of the reaction products when chemical equilibrium is reached. This equation 
interrelates the ratio of the kinetic parameters k’ and k” to the equilibrium con
stant K (T) , which can be calculated accurately by applying thermodynamic and n 
quantum -mechanical methods. 

By using equation (4.7), equation (4.6) can also be written in the form 

If several reactions occur simultaneously in the system, it is necessary to 
use the principle of independence of the individual reactions in order to calculate 
the overall rate of formation of the ith component. According to this principle, if 
several reactions occur in the system, each of them wil l  proceed independently 
of the others, and each will obey the law of mass action. The total rate of forma
tion of the ith component is equal to the sum of the rates of formation of this com
ponent in each of the reactions: 

where a is the number of independent reactions, s is the reaction number. 

For an ideal gas whose state is described by Clapeyron’s equation, 

(4.10) 

Here p. is the partial pressure of the ith component, R is the universal gas con
1 


stant (if [n.] is measured in mole/cm3, and the pressure in atmospheres, the gas
1 


constant is R = 82.05 cm3- atm. mole-I* OK-I). 

In the equilibrium state 

(4.11) 

Apart from the equilibrium constant Kn expressed in terms of the numbers 
of moles (equation (4.7)), use is frequently made in chemical kinetics of another 
equilibrium constant K

P 
expressed in terms of the partial pressures: 
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(4.12) 

Bearing in mind equation (4. l l ) ,  it is not difficult to see that the equilibrium 
constants Kn and K

P 
are  interrelated by the equation 

N 


fr', L:: K,, (BT)-*", AV = 2 (VI- v;). (4. 13)I;= 1 

The ratio of the number of moles of the ith component per unit volume (or
the partial pressure of the ith component) to the total number of moles per unit 
volume (or to the total pressure of the mixture) is termed the molal concentra- b o 3
tion of the ith component: 

(4. 14) 

N 


Here [n]= 2 [nil is the total number of moles per unit volume, and p is the 
i= 1 

pressure of the gas mixture. 

The expression for the equilibrium constants in terms of the equilibrium
molal concentrations is 

(4.15) 

Analogously, it is possible to introduce an equilibrium constant expressed 
in terms of the equilibrium mass concentrations: 

(4.16) 

Here 

(4.17) 

By using these relationships, it is not difficult to show that the following 
interrelationships exist among the equilibrium constants : 
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It can be seen from equations (4.15) and (4.16) that the equilibrium con
stants K and K are always dimensionless parameters. A s  regards K and K

PX C n 
(equations (4.7) and (4.12)), these equilibrium constants are dimensionless only 
when Av = 0. In order to be able to use any of the equilibrium constants given 
above in the expression for  the rate of a chemical reaction (eqyation (4.8)), it -D o 4  
is useful to note that the group 

N I
-k" fl [ n k ] v k - v k
I 

k' 
k = l  

must always be dimensionless. 

By introducing the following quantities by analogy with the equilibrium con
stants 

k = l  k - 1 

it is found that 

( a =  n, p ,  z). (4.19) 

By using equations (4.19), the following equivalent expressions can be ob
tained for the rate of the chemical reaction: 

(4.20) 
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(4.20 
li=1 Cont'd) 

Equilibrium constants. Statistical thermodynamics 195, 961 leads to the -Do5 
followhg expression for the equilibrium constant: 

(4.21) 

where 

(4.22) 

is the difference between the energies of the reaction products and the energies of 
the reacting materials at a point with zero temperature, while the reacting mate
rials and reaction products are  considered to be in a state with unit concentration 
at normal pressure; QP is the sum of the states for the gas with unit pressure; 
E 

C 
is the energy of the gas at absolute zero. 

The sum of the states for the gas with unit pressure is related to a funda
mental quantity in statistical thermodynamics, the total sum of states Q, by the 
equation 

Q p  = PV- (4.23) 

The sum of states Q, is expressed as follows: 

(4.24) 

where ei is the energy of the particles in the ith state; gi is the statistical weight
ing o r  degree of degeneration of the energy levels, i.e. , the number of states of 
particles with energy levels close to ci. 

According to modern concepts, the energy of a gas molecule can be made 
up of an energy of translational motion et, an energy of rotational motion er, an 
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energy of intramolecular vibration, i. e., vibrations of atoms o r  groups of atoms -BO6 
in the molecule, E ~ ,an energy of electronic excitation ee, and an energy of 
nuclear excitation. For the temperatures which are encountered in gas dynamics, 
the energy of nuclear excitation can be neglected. If it is assumed that inter
relationships among the various forms of energy are absent, the sum of states 
can be represented by 

Q = QLPQVQC. (4.25) 

The factors on the right-hand side of equation (4.25) are  the respective sums 
of states connected with the translational, rotational, vibrational and electronic 
energy levels. It can be shown by the methods of statistical thermodynamics that 
for  biatomic molecules these factors are  

(4.2 6a) 

(4.26b) 

(4 .26~)  

(4.26d) 

Here mA is the mass of the molecule, I is the moment of inertia of the molecule;
2 

h is Planck's constant; v is the frequency of the vibration; Tr is a Characteristic 

temperature for rotation, Tv is a vibrational characteristic temperature. 

rThe expression for QA is given for a biatom.0 molecule consisting of single
2 

atoms. For monoatomic particles, which do not have rotatior. ind vibrational 
degrees of freedom, the corresponding sum of states assumes a value equal to 
unity. The sums of states for the translational and electronic degrees of freedom 
of monoatomic particles have the same forms as equations (4.26a) and (4.26d), 
except that in equation (4.26a) it is necessary to replace mA by mA. 

2 

Rate constants for homogenous reactions. An expression for the rate con
stant of a chemical reaction can be obtained only on the basis of the collision b o 7  
theory (Arrhenius' theory) [97, 981, o r  from the theory of absolute reaction rates 
[99] (sometimes the absolute reaction rate theory is termed the method of acti
vated complexes). 
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The collision theory, which is an integral part of formal kinetics, does 
not consider the mechanism of the collisions, but gives only a quantitative de
scription of the results of particle interactions. The collision theory was founded 
by Arrhenius. According to Arrhenius, all reactions occur through an inter
mediate stage related to the formation of active molecules, i. e. , molecules pos
sessing an amount of energy sufficient to overcome an energy barrier. For this 
elementary act of the chemical reaction to occur, it is necessary for the mole
cules of the reacting materials to approach each 
other. This is so regardless of whether the pro
cess involves the liberation or the absorption of 
energy; as a rule, as  the molecules approach
each other, repulsion forces occur, and to over
come these some definite energy is required. In 
order to illustrate this, Fig. 57 shows a sketch 

E Fiof how the energy of a reacting system varies. 

The potential energy of the system is plotted

along the ordinate, while along the abscissa is 

1 I /I I /// 


plotted a coordinate characterizing the relative 

positions of the atoms. Region I corresponds to Figure 57. 

the initial particles, region 11to the activated 

particles, and region 111to the reaction products.

The energy difference between the initial and final states of the system is equal to 

the energy effect of the reaction ( A E o ) .  Ea is the energy of activation, i.e., the 

minimum value of the overall energy of the colliding molecules which is required BO8
-
for them to enter into reaction with each other. 

The reaction rate constants are directly related to the numbers of collisions 
of activated molecules, and so the value of this constant is made proportional to 
the Boltzmann factor, exp (-E a/RT). The problems of which collisions must be 
regarded as  active ones must be solved experimentally. Comparison of the cal
culations based on various hypotheses with experimental data showed that for 
simple molecules only those collisions in which the components of the kinetic 
energies of the relative motion along the line of the centers exceeds the adiva
tion energy can be regarded as active collisions. In this case, the following ex
pression is obtained for the reaction rate constant (see also [98]) : 

(E = k', If). 

1 1 -IHere rI2is the sum of the radii of the colliding particles; = ("i + -)m2 
is the reduced mass of the particles; k is Boltzmann's constant. 

This expression for the reaction rate constant does not always lead to re
sults which a re  in good agreement with experiments, particularly if the reaction 
involves complex molecules. The explanation is that not all the active collisions 
lead to chemical changes. In order to take this fact into account, it is necessary 
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to introduce an additional factor P in the expression for the reaction rate con
stant which expresses the probability tbat an active collision will be succeeded 
by a chemical change. (P is sometimes termed the steric factor). In this case 
the expression for k assumes the form 

(4.27) 

If all the active collisions lead to reactions, P = 1. In reactions in which com- 
plex molecules play a part, P can be very small (of the order of 

h o g  

Instead of equation (4.27) it is more usual to use the expression 

7c = Z(T)exp (-3) (4.28), 

which Arrhenius introduced in practice. The value of the pre-exponential factor 
Z(T) is usually determined experimentally, and for some not too complex reac
tions it can be computed on the basis of the absolute reaction rate theory *. 

Heterogeneous chemical reactions %. In chemical kinetics the term 
"heterogeneous" refers to reactions which occur on interfaces o r  boundaries. 
Depending on the nature of the participation of the surface in the reaction, the 
heterogeneous reactions which are of greatest interest fall into two types. 

In one case, the surface plays the part of a catalyst for reactants which are  
in the gas phase. In this case, the products of the heterogeneous catalytic reac
tion do not contain elements appearing in the composition of the surface. In the 
course of such reactions, neither the properties of the catalyst nor the shape of 
the calalytic surface varies. The reaction of catalytic recombination of atoms 
can be mentioned as an example of such a reaction. 

In the second case, the surface takes a direct part in the reaction. The 
combustion of carbon surfaces around which a stream of high-temperature air  
flows can be mentioned as an example. In such a process, the shape of the sur
face may change as a result of the combustion products being carried away by 
the a i r  stream. 

The chemical processes in heterogeneous reactions are  localized in a thin /2 10-(monomolecular) layer at the surface. The volume of this layer is determined by 
the size of the surface and the dimensions of the reacting molecules. This mono-
molecular layer is held on the surface by the forces of chemical adsorption, 

- __ - -._ -

* A  discussion of the absolute reaction rate theory is outside the scope of 
the present book. Readers who are interested in this theory are recommended to 
consult the monograph of Glasstone, Laidler and Eyring [991.

** For this problem, the paper of Rosner [loo] is recommended; this con
tains a review and an extensive bibliography. 
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which are similar in nature to the forces of valency bonds (physical, or van der 
Waals, adsorption seldom leads to heterogeneous reactions). 

The processes in a reaction occurring on a solid wall can be divided into 
the following stages: 1)transport of the reading materials to the surface; 2)
chemical adsorption of the reacting materials onto the surface; 3) chemical reac
tion among the reacting materials adsorbed on the surface, or between adsorbed 
components and components in the gas phase; 4) desorption of the reaction prod
ucts from the surface; 5) removal of the reaction products from the surface. 

By way of an example, let us consider the surface reactions of recombina
tion and dissociation of oxygen. One of the possible mechanisms for this reaction, 
which is named the Langmuir-Hinshelwood reaction [1011, can be described by 
the following system of equations: 

0 + w 2 onr, (4.29) 

ow + ow 2 0, -1- w + w. (4.30) 

Equation (4.29) describes the adsorption (forward reaction) and desorption (re
verse reaction) of oxygen atoms. W denotes the so-called active parts of the 
wall, and OW the adsorbed atoms of oxygen, i. e., the atoms chemically bound 
to the surface. Equation (4.30) describes the reaction between neighboring ad
sorbed atoms, as a result of which molecules of oxygen are  formed and liberated 
(desorbed), setting free active sites (W). 

Another possible mechanism of the reaction (sometimes termed the h&Ridil-Ely mechanism [ lo l l )  is described by the relationships 

0 + w ow, (4.29) 

0 + ow 2 0, 4-w. (4.31) 

Equation (4.31) describes the reaction between adsorbed atoms of oxygen and 
oxygen atoms from the gas phase. 

In both the first and second cases the rate at which the reaction occurs 
depends on the type of surface and the conditions on it. 

In order to simplify the calculations, it is usually assumed in gas dynamic
applications that the adsorption reaction occurs very rapidly, and so does not 
control the rate of the reaction as a whole. In this case, the reactions of types
(4.30) and (4.31) control the overall rate. Schematically, both reactions can be 
represented in the form 

(4.32) 
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where kwi and k are the rate constants of the forward and reverse surface
wj

catalytic reactions. The expression for the rate of formation of the component 
Ai given by formal kinetics can then be represented in the form 

(4.33) 

where ni and ni are the orders of the forward and reverse reactions; [Ailw and 
J 

[A.J a re  the concentrations of the reacting materials and the reaction products
J W  

at the wall. The dimensions of the rate constant k (or k .) depend on the 
w i  WJ 

dimensions of the reactant concentration and concentration of the reactant 
products. 

By introducing the equilibrium constant 

(4.34) 

(here the superscript (e) refers to parameters in the state of thermodynamic 
equilibrium) equation (4.33) can be rearranged to the form 

gAiw = dt 
-- kwi{[Aj]? -K ,  [ Aj]?}. (4.35) 

Under steady-state conditions, the rate of formation of each component is 
equal to the diffusion flux of this component to the surface: 

Equation (4.36) can be used as a boundary condition in solving boundary layer 
problems in the presence of surface catalytic reactions. 

In many cases, the dependence of the constants kwi on temperature is well 

described by Arrhenius' law: 

Here koi is a constant for the reagent - cataIyst system studied; Eaw is the energy 
of activation. The ratio of Eaw to the universal gas constant R can be regarded as 

a ''characteristic" temperature Taw of the particular system of reactants and 
catalyst. 
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The kinetics of dissociation and recombination reactions in air. Under 
normal conditions-air behaves as a mixture of mainly diatomic molecules of 
oxygen and nitrogen. 

The concentrations of carbon dioxide gas, water vapor, argon and other 
trace materials are  so small that their presence in the air can be neglected in 
most practical cases. 

Over the temperature range from 2000 to 8000°K triatomic components, 
such as Os, NO2 and some other polyatomic oxides of nitrogen, play no important 
part, nor do ionization processes. The following are the main reactions in this 
temperature range [1021: /2 13-

0, +,x z0 + 0 + x  
N2 + X ZLN + N + X  
N, + 0 2 NO + N, (4.38) 

NO + 0 c’0 2  + N ,  
NZ + 0 , z N O  + NO, 

NO + X <ZN + 0 -t X 

Here X denotes a catalytic particle. 

Of these six reactions, the last four, which involve NO, play a secondary 
role compared with the first two, since the equilibrium concentrations of nitric 
oxide a re  usually small (less than 1%).In carrying out approximate calculations, 
therefore, when the main objective is to obtain overall characteristics (friction, 
heat flux), it is possible in many cases to confine our attention to the first two 
reactions. It was also mentioned above that molecular oxygen is almost com
pletely dissociated (bearing in mind the equilibrium dissociation) before nitrogen 
begins to dissociate. This fact makes it possible to regard air as a binary mix
ture of atoms and molecules. In this case, it is only necessary to make allow
ances for the differences in the dissociation energies of oxygen and nitrogen. 

For  nonequilibrium dissociation, the binary model for air  may in some 
cases show inadequacy as a result of differences in the rate constants for recom
bination kr for reactions in which various catalytic particles (X)take part. The 
values of the constant kr for various reactions and various catalytic particles are 
given in Table 13, which is taken from the paper of Chung [103]. As can be seen 
from Table 13, the main scheme according to which the dissociation reactions 
occur can be written in the form 

Here A, denotes a diatomic molecule, A denotes an atom, and X denotes a 
catalytic particle (atom o r  molecule). 
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Table 13 

~ - - ~  

Reaction 
.. .

I I--

Dissociation and recombination processes which occur according to the 
scheme A2 - A + A ,  i. e. , without the participation of particles X, play no 
important part. The rate of the forward reaction appears to be small, since the 
direct breakdown of a strongly excited molecule is not very probable. The rate 
of the reverse reaction is also small, since the molecules which a re  formed as 
a result of the combination of two atoms possess very high energies. A s  a result, 
most of such molecules dissociate after first colliding with other particles. 

From the information in Table 13 it is clear that the rate constants for the 
recombination of oxygen and nitrogen differ appreciably from one another depend
ing on the type of catalytic particle (X) participating in the reaction. The reaction 
rate constants, which a re  distinguished only by the type of the catalytic particle, 
depend only on the temperature and are  interrelated by relationships which arise m 5  
from the principle of local equilibrium 

(4.40) 

where K (T) is the equilibrium constant given by equation (4.7).n 
By using the relationships obtained earlier in this section, it is not difficult 

to write an equation for the mass rate of formation of an atomic component wA 
during the occurrence of reactions described by the stoichiometric relationship 
(4.39). If the mixture consists of N components, then in the general case the 
mass rate of formation wA can be obtained, according to the principle of inde

pendence of reactions (equation (4.9)), by summing the rates of formation in each 
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of the reactions (in this case, the number of reactions s is equal to the number 
of components N). For subsequent use, it is convenient to determine an expres
sion for wA in terms of the mass concentrations of the components. Thus, in 
order to obtain the rate of formation d[nA]/dt, it is possible to use the last part 
of equation (4.20), and for the equilibrium constant and the ratio K*/K, equation 
(4.16) and the last of equation (4.19)are used. By remembering that for all N 
reactions of the type (4.39), which differ only through the catalytic particles X, 
and whose stoichiometric coefficients are the same and equal to vX,  = 1, 

it is found that 

(4.41) 


Both here and subsequently, the superscript e denotes an equilibrium parameter; /216 
cxs is the mass concentration of the catalytic component (X) in the sth reaction; 
N is the number of components in the reaction. 

Sometimes it is more convenient to express the rate of formation of an 
atomic component wA not in terms of the dissociation rate constant kds, as in 
equation (4.41),but in terms of the recombination rate constant krs. In this 
case, by using equation (4.40)and the relationship between the constants Kn and 
Kc given by equation (4.18), it is not difficult to show that 

(4.42) 


The equilibrium constant Kc which is defined in the general case by equation
(4.16)assumes the following form for the reaction (4.39): 

(4.43) 
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In order to determine the equilibrium constant we have to return to equation 
(4.21). For the reaction (4.39), this equation assumes the form 

A E"In A',, 7 - z  - II 7' 1- 2 In Q2>(A)- I n  QP(&). (4.44) 

The expression for the sum of the states of the molecules ((4.26)) and atoms is 
now substituted into the previous equation 'tthe sum of the states related to the 
translational energy levels for an atom, QA , is expressed in the same way as 

tQ,A2, except that mA must be replaced by MA). After making this substitution 
2 

and converting from K
P 

to Kc by equation (4.18), it is found that 

(4.45) 

Here Td is the characteristic dissociation temperature, equal to 

(4.46) 

where D is the dissociation energy per unit mass of the molecule, A E, is the 
dissociation energy per mole of the initial material (molecule). 

Thus, to determine the equilibrium constant Kc it is necessary to know the 
characteristic temperatures : the value for dissociation Td, the vibrational value 
Tv,' the rotational, Tr, and also the electronic sum of states for  the main com
ponents of the air. Data on these characteristic temperatures a re  given in 
Table 14 [1041. 

Table 14. 

The electronic sums of states are  described as follows (see the work of 
Hansen [lo41 to which reference has already been made) : 
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(4.47) 


It follows from equation (4.47) that over the range of temperatures being con

sidered (2000 - 8O0O0K)the ratios of the electronic sums of states for nitrogen 
/z 18 
and oxygen, which are required for calculating the equilibrium constants, vary 
insignificantly; it can therefore be assumed approximately 

(4.48) 


If the assumption (4.48)is made that the ratios of the electronic sums of states 
are  constant (this assumption is fulfilled to a high degree of accuracy for nitro
gen, and the e r ror  does not exceed 10 - 12% for oxygen), the expression for the 
equilibrium constants (4.45)can be written as follows: 

I<,=?-- Fit) (-,'"[I - esp (- +)]exp (- +) (4.49) 

Here 

(4.50) 


is the so-called characteristic density. A dissociating gas whose equilibrium 
constant is described by equation (4.49)( pd = constant) is termed a "partially 
excited dissociating gastc[105]. When the conditions of equation (4.48)are satis
fied, pd = 151 g/cm3 for  oxygen; for nitrogen under the same conditions, 
pd = 107 g/cm3 [105]. 

Calculation of the group 

(4.51) 


which appears in the right-hand part of equation (4.49) shows that for gases such 
as oxygen and nitrogen, the quantity pdL varies relatively little over a wide 
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range of temperatures. This can be seen from Table 15, taken from the paper 
of Lighthill r941. 

Table 15. 

This peculiarity in the variation of pdL was used by Lighthill, who proposed 
an "ideally dissociating gasffmodel, in which one of the main assumptions is that 
the quantity pdL is constant. Like pd, this quantity has the dimensions of a dens
ity. The quantity pdL has been termed the characteristic density of an ideally 
dissociating gas. For oxygen and nitrogen the values of pdL can be taken as 150 
g/cm3 and 130 g/cm3 respectively (other properties of an ideally dissociating gas 
and those of partially excited dissociating gases will be considered in a later 
section). Thus , for an ideally dissociating gas, equation (4.49) for the equilibrium 
constant Kc will assume the following form when equation (4.51) is used 

(f) , l , ,  = collst). (4.52) 

By now substituting equation (4.52) for the equilibrium constant Kc into 
equations (4.41) and (4.42) , the following equivalent relationships are obtained 
for determining the mass rates of formation of the atomic components: 

(4.53) 

For binary mixtures consisting of atoms and molecules of a single gas 
('A 'A2 = l),the last expressions become: 

(4.55) 
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(4.56) 


When the difference in the rate constants for dissociation (or, what is the 
same thing, for recombination) is small, it is possible to stop at the introduction 
of one constant, and equations (4.55) and (4.56) can be written in the form 

(4.57) 


(4.58) 


By using equations (4.43) and (4.45), it is not difficult to represent the last 
two expressions for the mass rates of formation of the atomic component in the 
form 

(4.59) 


(4.60) 


By equating the right-hand parts of equations (4.59) and (4.60), and making 
some simple rearrangements, an expression is obtained for the equilibrium con
stant: 

(4.61) 


In the general case, the reaction rate constants depend on the temperature 
according to Arrhenius' law (see equation (4.28)), i. e. , they increase exponen
tially with temperature. The rate constant for the recombination of atoms is an 
exception to this rule, since the recombination reaction occurs without requiring 
activation energy (Ear = 0). The expression for the recombination rate constant 
has the form 

k, = Z , ( T ) .  (4.62) 

For the recombination reactions occurring in air, kr is closely approxi
mated by a power relationship in temperature (see Table 12), 
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Table 17 

.- -

Reaction x 
~~ 

0 2  


Nz 


0 


N. NO 
Ar 

- -
I 

A t  moderate wall temperatures, reactions of the type (4.32) are first order, 
so that n = 1. 

It follows from equation (4.65) that when kw = 0, 

which corresponds to a chemically isolated (absolutely noncatalytic) surface ; 
when kw - 00, cAw- 0, which corresponds to an absolutely catalytic surface. 
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k, = A , F  (0<n <2). (4.63) 

The equilibrium constants Kn for the important reactions occurring in air 
at temperatures from 3000 to 8000°K have been approximated by Rei [lo21by 
relationships of the form 

The results of the approximations (error less than 10%) are given in Table 16. 

Table 16 

~~ 

React ion  Equilibrium cons tant  K,, lmens ion  

-

0 2  -kx 0 $-0 -t s 1.2.10’1’-‘!’0sp (-tt8 ooo/nT) mole/cm’ 

Nz + X t N  - k N  + X 18 C S P  (--224 Z)OO/R1’) mo1e/cm3 
N O + X t N + O + X  4 , o c x p  (-150000/11T) mole/cm’ 
Nz + 0.c‘ NO +N 4,sO X P  (-75 OOO/RT) I 

NO + 0 Z? 0 2 + N  0.24 eXp (-32 020JRT) 1 
(-42 980/RT) 1N a + O z Z N O + N O  19 C X ~  

Table 17 gives the values of the rate constants of the reactions occurring
in air which are recommended in the monograph by E. V. Stupochenko et al. 
11061. 

In the general case, the boundary conditions on a catalytic wall have the 
form of equation (4.36). For catalytic recombination reactions the conditions on -
the surface a re  usually far from thermodynamic equilibrium, [A]w >> [A] (e), 

/223 

and so the second term in the right-hand part of equation (4.36) can be neglected 
in comparison with the first. In this case, equation (4.36)’becomes 

By using equation (1.57) for the diffusion flux of the ith component, equa
tion (4.64) can be converted to the form 

(4.65) 


Here kw is the rate constant for the catalytic recombination, which depends on 
the temperature according to Arrheniusf law, equation (4.37); n is the order of 
the reaction. 
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A t  present there is only very limited information available on the reaction 
rate constants for the catalytic recombination of nitrogen and oxygen on various 
surfaces. Some of the available results are shown in Fig. 58, which is taken 
from the work of Coulard [107]. On the abscissa of this figure is plotted the 
catalytic capability yW, which is related to the constant kw through the relation
ship 

(4.66) 

On the ordinate is shown the wall temperature Tw. On the same figure are  shown 

lines of constant values of kw, which are practically the same for nitrogen and /224 

oxygen. 

Catalytic ability, y ,  

Figure 58. 

It should be noted that the data given in Fig. 58 were obtained for  the re
combination of pure nitrogen and oxygen. The processes of catalytic recombina
tion of mixtures of nitrogen and oxygen have been studied even less. 

21. The properties of partially excited dissociating and ideally dissociating gases 

In the previous section, an expression was obtained for the equilibrium con
stant of a partially excited dissociating gas (4.9) and for an ideally dissociating 
gas (4.52), as  well as for the mass rate of formation of atomic components. 

For  a partially excited dissociating gas consisting of atoms and molecules 
(binary mixture) , the equilibrium composition can be determined from the follow
ing relationship: 
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which is obtained from equations (4.43) and (4,49). The value of the character- m 5  
istic density pd, which is given in the general case by equation (4.50), can be 
assumed to be p d(02)= 151 g/cm3 for oxygen and pd(N2)= 107 g/cm3 for nitrogen. 

For an ideally dissociating gas, it follows from equation (4.43) and equation 
(4.52) that 

c(")T 

1 -A 
c y  

-c-PdL exp (- +), (4.68)
+") 

where pdL is given by equation (4.51). 

For oxygen, it can be assumed that p dL = 150 g/cm3, and for nitrogen that 

'dL = 130 g/cm3. 

For the subsequent treatment it is useful to consider the thermodynamic
properties of dissociating gases. 

Statistical thermodynamics leads to the following expressions for the 
enthalpy and internal energy of a gas mixture: 

(4.69) 

(4. 70) 

Here Q
TP 

is the sum of the states of the ith component of the gas mixture at unit 

pressure, which is given by equations (4.23) - (4.26) ; Qic is the sum of the states 
of the ith component of a gas mixture with unit concentration: 

(4.71) 

Qi is given by equations (4.24) - (4.26); h: is the energy of formation of the ith 
component per unit mass at a temperature equal to absolute zero. 

For a binary mixture of atoms and molecules with unexcited electronic states, 
substitution of Q.1P and Qic into equations (4.69) and (4.70) respectively given: /22 
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(4.72) 

(4.73) 

In these expressions for the enthalpy and internal energy of a partially excited 
dissociating gas, the third terms in the square brackets expresses the contribu
tion of the vibratory degrees of freedom to the enthalpy and internal energy. A s  
the temperature varies from 0 to 00, the values of these terms varies from 0 to 
(1. - cA ). The maximum contribution of the oscillatory degrees of freedom occurs 
when cA = 0, and consists of about 20% of the total enthalpy and 30% of the entire 
internal energy, 

A t  high temperatures, when dissociation becomes appreciable, equations 
(4.72) and (4.73) can be simplified by putting [Tv /TI [exp(Tv /T) - 11 = 1/2. 
According to this simplification, which, like the simplification of a constant 
characteristic density (pdL = const), is based on Lighthill's model of an ideally 
dissociating gas, it is assumed that regardless of temperature, the gas molecules 
a re  excited with respect to their vibratory degrees of freedom by a value equal to 
a half of the value of the "classicalffvibratory excitation of the molecules. At  
high temperatures this assumption does not lead to appreciable error,  since as 
the temperature increases, the concentration of the molecules (1- cA) decreases, 
and the contribution of the term cAD increases. Thus, for an ideally dissociating 

gas we will have 

(4.74) 

(4. 75) 

Also, by having an expression for the enthalpy and internal energy of a 
partially excited dissociating gas and an ideally dissociating gas, it is possible 
to define an ffeffective" specific heat capacity of the gas at constant pressure o r  
at constant volume. 

According to these definitions, the specific heat capacities of a gas mixture 
at constant pressure and at constant volume are  equal to 

(4.76) 
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By substituting into (4.76) the expressions for h and E (4.69) and (4.70) and 
making use of equation (4.67), the expressions for the "effective" specific heat 
capacities of a partially excited dissociating gas in a state of equilibrium are 
found to be 

(4.77) 

(4.78) 

In a similar way, using equations (4. 68) and (4.74) - (4.76), a n  "effective" 

specific heat capacity for an ideally dissociating gas is obtained for the case of /228

thermodynamic equilibrium: 


(4.79) 

(4.80) 

It is clear from the last two equations that the assumption that there is a constant 
excitation of the vibratory degrees of freedom leads to the ratio of specific heats 
in an ideally dissociating gas before the onset of dissociation being equal to 
cp /cv = 1.33 and not 1.4, as in the case of real diatomic gases in the absence of 
excitation of the vibratory degrees of freedom. In addition, it is not difficult to 
conclude that in an ideally dissociating gas, the specific heat capacities at con
stant volume per unit masses of molecules and atoms are  the same; cVA= cVA2, 
since the number of degrees of freedom of the molecules (six) is just twice a s  
large as  the number of degrees of freedom of the atoms (three). 

In various gas dynamic studies, including investigations of boundary layers
in dissociating gases, it is useful to introduce a characteristic pressure of an 
ideally dissociating gas, pd: 
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R 
Pd =-P d L T d .  (4.81)2MA 

Values of pd for oxygen and nitrogen are  presented in Table 18, along with other 
quantities which determine the properties of ideally dissociating oxygen and 
nitrogen. 

Table 18. 

An expression for the determination of the equilibrium concentration of 
atoms in an ideally dissociating gas as  a function of temperature can be easily /229 
obtained from equation (4.68) if use is made of the equation of state for  a binary 
mixture, which can be rearranged by use of equation (4.81) to the form 

(4.82) 

By eliminating the density p between equations (4.68) and (4.82), it is found after 
some simple rearrangements that 

(4.83) 

To conclude this section, results of calculations of the equilibrium concen
trations of oxygen atoms are  given in Fig. 59 for a pressure p = 1 atm and various 
temperatures �or an ideally dissociating gas (dashed curve, calculated from equa
tion (4.83) with pdL = 150 g/cm3 ) and a partially excited dissociating gas (solid 

curve, calculated from equation (4.67) with pd = 151 g/cm3 ). As can be seen from 
Fig. 59, which is taken from the work of Glass and Takano [105], the difference 
between the equilibrium concentrations of an ideally dissociating and a partially 
excited dissociating gas is quite small. 
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Figure 59. 

22. Formulation of the problem of the turbulent boundary layer in a dissociating.- - - . - ___ 
gas 

Some remarks on the dynamic structure of the turbulent boundary layer at- _ _  . . _ ._-
large supersonic velocities. The results of velocity profile measurements in 
turbu!ent boundary layers on a flat plate at large Mach numbers (up to Me = 10) 

and various values of the temperature factor (see section 11)showed that in terms 	 /230-
of the universal coordinates the velocity profile was satisfactorily described by a 
linear relationship in the laminar sublayer, while the turbulent core (or  at least, 
the inner part of it) was logarithmic. 

A s  already mentioned, it is characteristic of velocity profiles at large
Mach numbers that the extent of the transition (buffer) zone between the laminar 
sublayer and the turbulent core is reduced. The buffer zone essentially disappears 
completely, and the transition from the laminar sublayer to the core becomes 
quite sharp. 

Another important feature of the velocity profiles at large Mach numbers is 
the increase in the relative thickness of the laminar sublayer as the Mach number 
increases. It is well h o w n  that in incompressible fluids the thickness of the lami
nar sublayer does not exceed 2 - 3% of the total boundary layer thickness. Accord
ing to Hill's data, presented in section 11, at Me = 9 the sublayer thickness can 
make up about 15%of the total boundary layer thickness. 

These features of the experimental velocity profiles at large supersonic 
velocities must, of course, be taken into account in setting up semiempirical
methods of calculating turbulent boundary layers. Even the possibility of setting 
up semiempirical methods of calculating turbulent boundary layers at large super
sonic velocities is largely based on the existence of a sufficiently extensive loga
rithmic section of the velocity profile in the turbulent core. The presence of such 
a section makes it possible to apply the semiempirical formulas of Prandtl and 
von K d r m h  to the calculation of turbulent boundary layers at large Mach numbers, 
since, as shown in section 10, these formulas always lead to a logarithmic velocity 
profile, regardless of the distribution of density in the boundary layer. 
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A sharp transition from the laminar sublayer to the turbulent core (dis
appearance of the buffer layer) confirms the applicability of the Prandtl two-layer /22 

model (laminar sublayer - turbulent core) in the theory of turbulent boundary 

layers at large supersonic velocities. 


Finally, the last of these features of the velocity profiles at large super
sonic velocities (the increase of the relative thickness of the laminar sublayer) 
indicates that the part played by the laminar sublayer in heat and mass transfer 
processes in the boundary layer must increase. A result of this is that in calcu
lating heat and mass fluxes it is necessary to take into account the molecular 
thermal and diffusional properties of the sublayer quite accurately (i. e.,  to allow 
for the Prandtl and Schmidt numbers being different from unity). A s  regards the 
calculation of friction at large supersonic velocities, it is obvious that here it is 
possible to confine our attention to flow in the laminar sublayer, assuming that 
the Prandtl and Schmidt numbers are equal to unity. 

The turbulent boundary- -layer . ~ - . . . -__. .-. .- .gas.. The general. ...equations in a.---dissociating
turbulent boundary layer equations in a multicomponent mixture of chemically 
reacting gases have been obtained in Chapter 11. In the present chapter we wil l  
consider only steady flow in the boundary layer, assuming that the turbulent 
Prandtl and Schmidt numbers a re  equal to unity. 

The main equations can be written in the following form: 

continuity: 

(4.84) 

momentum : 

(4.85) 

energy: 

(4.86) 

(4.87) 
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equation of state: 

(4.88) 


The total enthalpy H is defined by the equations 

T 

U2II = h +2,  h = 2ciht, hi = cPidT +h:. (4.8 9) 

i 0 

For an impermeable wall, the velocity boundary conditions have the usual 
form 

u = v = O  at "O,} 
(4. 90)

u +  u, at y-tO3. 

The boundary condition for the total enthalpy is not difficult to obtain from 
equation (4.89). At  the wall we have 

at Y = 0, (4.91) 

and at the outer edge of the boundary layer 

The concentrations of component i at the wall, ciw, and at the edge of the boundary 
layer, cie' appear in the boundary conditions for the total enthalpy, (4.91) and 
(4.92). The concentration of the ith component at the outer edge is usually known 
from the solution of the outer stream, so that the boundary condition for the con
centration at the outer edge has the form 

e .  -* cis at 7 J - t  00. (4.93) 

In the general case, in the presence of catalytic reactions on the surface, 
the concentration at the wall ciw is not known in advance, and must be calculated 

/ 2 2  

in the course of solving the problem using the boundary condition (4.36) (for air 
with not too high wal1 temperatures, this condition can be simplified to the form 
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(4.65)). The concentration boundary condition on the wall becomes definite in 
two limiting cases: 1)when the wall is absolutely noncatalytic (kd = 0); in this 
case it follows from the condition (4.36) that 

(4.94) 

2) when the wall is absolutely catalytic (kwi - a));in this case if follows from 
the same condition (4.36) that 

c .  = at y = 0. (4.95) 

For air  at not too high wall temperatures, cA(e) = 0 at y = 0,  and so condition 
(4.95) can be simplified to the form 

c i  = 0 at y = 0. (4.96) 

In studying turbulent boundary layers it is convenient in many cases to use 
the energy equation and the equation for conservation of the ith component in 
terms of Crocco variables, (2.63), (2.64). In what follows, flow in the turbulent 
boundary layer will be considered in the framework of the two-layer Prandtl 
model (laminar sublayer - turbulent core), and so it is convenient to express 
these equations separately for the sublayer and core, bearing in mind the assump
tion made earlier in this chapter that the turbulent Prandtl and Schmidt numbers 
a re  equal to unity. 

In the laminar sublayer we will have: 

energy equation: 

equation for conservation of component i: 

(4.98) 

In the turbulent core the energy equation and the conservation equation for 
the ith component become, in Crocco variables: 

(4.99) 
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The boundary conditions for equations (4.97) - (4.100) can be written as 

(4.100) 


(4.10 1) 

It is pertinent to note that the comments made at the beginning of this sec
tion concerning concentration boundary conditions at the wall remain valid here 
also. 

The Damkxhler number, Frozen equilibria in nonequilibrium flows. The 
nature or the  flow in a boundarv laver during the occurrence of chemical reac
tions in the external stream aid in the bouniary layer itself depends on the ratio 
of the rates of diffusion and of the chemical processes. 

Let us return to the equation for the conservation of an atomic component, 
equation (4.87), which was set up for a binary mixture, for simplicity, consist
ing of atoms and molecules. Equation (4.60) is used as an expression for the mass 
rate of formation of the atomic component. By substituting this expression into the 
conservation equation, it is found that 

This equation can be converted into dimensionless form by introducing a char
acteristic dimension of the flow, L, as a length scale, the velocity of the 
on-flowing stream U, as a velocity scale, and the density and viscosity p, 

and pa as  measures of the density and viscosity. A f t e r  several rearrangements 
it is found that 

Here 

L 

The dimensionless group Da which appears in the right-hand part of this 
equation is known as the Damkthler number. It is mot difficult to explain the sig
nificance of the Damkahler number by considering separately the numerator and 
denominator in the last equation. Actually, it is readily seen that the quantity 
L/U,, which appears in the numerator, characterizes the time for which a par
ticle remains in the boundary layer (tstream ). The quantity in the denominator, 
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l/ P$ = tchem also has the dimensions of time. This quantity characterizes 
the lifetime of an atom, and is the characteristic time which determines the rate 
at which chemical processes are  occurring. 

Thus, the Damkijhler number represents a ratio of two characteristic 
times: the time for which particles remain in the stream (the diffusion time), 
and the time for the chemical reaction to occur, i. e. , 

(4.102) 

If Da -0, the time for the chemical reaction to occur is much larger than the 

time for which particles remain in the stream (tchem >> tstream), and as  a re

sult, the effect of the chemical reaction in the gas phase on the flow in the 

boundary layer is insignificant. In this case, the mixture of gases in the boundary 

layer can be regarded as chemically inert, and the boundary layer as chemically 

"frozen". In this case the dissociation products (atoms) appear in the boundary /=

layer only as  a result of their diffusion from the outer stream. For a chemically 

frozen boundary layer the conservation equation of the boundary layer is simpli

fied, since the term expressing the mass rate of formation of the ith component 

is equal to zero (w.

1 
= 0). 


If the Damkohler number is very large, Da - m, the time for the occur
rence of the chemical reaction is much smaller than the time for which the par
ticles remain in the boundary layer (tchem<< tstream ), and consequently at each 
point in the boundary layer it will be possible to establish local thermochemical 
equilibrium. The concentration distribution of each component will not depend on 
transport processes (convection and diffusion), and will  depend only on the local 
values of the temperature and pressure. In this case the need for a conservation 
equation for the ith component disappears, and the concentration distribution is 
determined from the condition wi = 0 (the sign of the equation should not be con
fused with the sign of the identity in the case of frozen flow). A boundary layer in 
which thermochemical equilibrium is established is termed an ffequilibrium" 
boundary layer. 

When the Damkiihler number is finite in size, the rates of the chemical 
processes and the transport processes may be quantities of the same order 
(tstream/t chem - l), so that the thermochemical state of the boundary layer will 
differ from equilibrium. For sake of brevity, such boundary layers will be referred 
to as "nonequilibrium" boundary layers. In order to determine the concentration 
fields in this case it is necessary to use the conservation equations for the indi
vidual components in their general form. 
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23. Velocity profiles, integral thicknesses, and friction on a flat plate 

Returning to Section 12, it is not difficult to see that many of the results 
obtained there a re  also valid in the case of flow of a dissociating gas around a 
flat plate. Actually, the expressions for the velocity profiles 5 the turbulent 
core (equation (3.28)) which were obtained from the von K6rman formula without 
any assumptions as to the nature of the density changes in the turbulent core can 
still be used for calculating the velocity profiles on a plate in the presence of 
dissociation. Making use of the assumption (3. l), according to which friction r 
is constant across the boundary layer and eqlual to rW, this expression becomes 

(4.103) 

From equation (4.103), the value of the derivative dq/dq in the turbulent core, 
which is needed later, is found to be 

(4.104) 

For the velocity profile in the laminar sublayer, it is possible to use a 
linear relationship, just as  in Section 12: 

cp = 9. (4.105) 

The basis of this relationship was given from the consideration of experimental
data in Sections 11and 13. 

In the laminar sublayer the derivative d q/dq is obviously 

_ dq - 1. (4.106)
4 

In order to determine the Reynolds numbers formed from the momentum 
loss thickness and the displacement thiclmess, and the form parameter 

equations (3.42), (3.44) and (3.45) can be used; these equations were derived in 
Section 12 for any arbitrary density distribution in the boundary layer. 

For convenience, the following expressions are introduced here : 

-h 3 7  

-
h 3 8  
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(4.107) 


Here, 

It is not difficult to see that for calculating friction only the formulas de
rived in Section 12 need be used. The only thing lacking to apply these relation
ships to actual situations is the velocity dependence of the gas density in the 
boundary layer. This comment refers to the function K, which for an arbitrary 
density distribution in the boundary layer assumes the form 

(4.10 8) 

The form of the functions F, G and N which are required for calculating the fric
tion remain unchanged in the present case being considered of the flow of a dis- /23 9-sociating gas. For convenience, a collection of all the relationships required for 
calculating friction can be presented: 

(4.109) 
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It may be mentioned that the local friction coefficient cfo on a plate along which 
an incompressible fluid flows can be evaluated either by von Ka/rmdnrsformula, 
(3.59), or by equation (3.80). The dynamic viscosity can be determined from the 
power formula, equation (3.61). The function N is easily calculated from the last 
of equations (4.109) by using tables of logarithms to base 10. 

In a similar way, generalizations can be made of all the formulas obtained 
in Section 12 for the calculation of local and average friction to allow for the flow 
of a dissociating gas. The effect of the thermochemical state of the flow on the 
resistance in the boundary layer obviously appears through the dependence p(u)
and also through the viscosity p . Thus, the problem of calculating drag reduces 
to establishing the dependences of temperature and density on velocity. 

The establishment of these relationships for frozen, equilibrium and non
equilibrium flows in the boundary layer will be dealt with the next Sections of 
this chapter. 

24. Flow along a flat plate at Schmidt and Prandtl numbers equal to unity._.- . . .. .-. - - . . . -_.. .. ..- ..-. . .--- ... 

Relationshipbetween the velocity profile and total enthalpy. Let us con
sider ‘flow along a flat plate Tdp[ZE-= 0) of asupersonic gas stream, (see 
Fig. 22). The Prandtl and Schmidt numbers (and consequently, the Lewis number 
also), will be regarded as equal to unity. In this case, the differential equations 
for momentum (4.85), energy (4.86), and conservation of the ith component (4.87) D4.o-assume the form 

(4.110) 


(4.111) 


(4.112) 


From equations (4.110) and (4.111) and the boundary conditions (4.101), it 
follows that the velocity and total enthalpy fields are similar: 

(4.113) 


By solving equation (4.113) for H, it is found that 

Equilibrium flow of an ideally dissociating gas. In the case of total thermo
chemica1-equilibdum, the concentration of atomic components of a mixture is 
uniquely determined by the locaI values of the temperature and pressure. The 
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relationship between the concentration and pressure and temperature for an 
ideally dissociating gas is given by equation (4.83). A s  a result of the constancy 
of the pressure across the boundary layer, the pressure p in this equation can 
be put equal to the pressure at the outer edge of the boundary layer, pe’ A s  a 
result, it is found that 

(4.115) 


Here pd and Td are  the characteristic pressure and temperature (values of these 
quantities are given for oxygen and nitrogen in Table 18). 

The relationships between the velocity, temperature and concentration pro
files are  easily obtained by substituting into the left-hand part of equation (4.114) 
the expressions for the enthalpy of an ideally dissociating gas, equation (4.74).
Afte r  making this substitution and some rearrangements, it is found that & 

.-

[W-(TI,- E,”)u -6, $-47 +c* (1 ,+T )  r= 0. (4.116) 


where 

(4.117) 


Equations (4.115) and (4.116)make it possible to establish a relationship 
between the velocity and the temperature and concentration. By substituting equa
tion (4.115) into equation (4.116), the following quadratic equation in the dimen
sionless velocity is obtained: 

- aB + b = 0. (4.118) 

Here 

a = / I ,  - It ,” ,  

(4.119) 
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When equation (4.118) is solved for ii, it is found that 

The sign in front of the root in equation (4.120) is selected from the condition-
u 5 1. 

Once the relationship between the velocity and temperature is established 
with equation (4.120), equation (4.115) can be used to find the relationship be
tween the velocity and temperature. 

The density distribution in the boundary layer is easily determined in terms 
of kuown temperatures and concentrations using the relationship 

(4.121) 


which is obtained from the equation of state (4.88) if the condition that the pres
sure is constant across the boundary layer is taken into account. 

The local friction coefficient can be determined from the density distribu
tion and equations (4.108) and (4.109). 

Frozen flow of an ideally dissociating gas on a catalytic plate. In frozen 
flow the rate ofc ie rdcdreac t ion  is negligibly-smaV compared with the rate of 
diffusion (wA 1 0 ) ,  so that the concentration distribution as a whole is determined 
by diffusion processes. 

The equation for the conservation of the atomic components (4.112) assumes 
the following form in the present case: 

(4.122) 


In this case the need for a conservation equation for the molecular compo
nent cA disappears, since for binary mixtures, c

A2 
= 1 - cA. 

2 

From equations (4.110) and (4.122) and the boundary condition (4.101) it 
follows that the velocity and concentration fields are similar: 

The boundary condition (4.65) can be used for determining the concentration 
of atoms at the wall; if the order of the catalytic reaction is taken to be unity 
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(which occurs for air at not too large values of the wall temperature), the con
dition can be simply rearranged to give 

(4.124) 

Ifthe derivative (dcA/d;)w is determined from equation (4.123), the following 
expression is obtained for the concentration at the wall from equation (4.124): 

(4.125) 

When kw = 0, which corresponds to the case of an absolutely noncatalytic 

wall, cAw = cA e  y 
i. e. , the concentration of atoms in the boundary layer is con

stant over the cross section and is equal to the value at the outer edge of the 
boundary layer (this corresponds to equation (4.123)). 

When kw -00, which corresponds to the case of an absolutely catalytic 
wall, cAw- 0, i. e. , all the atoms which diffuse to the wall recombine there. 

By solving equation (4.123) for cA, a dependence of the concentration of 
atoms on the velocity is obtained 

Then by substituting equation (4.126) into equation (4.116) , and solving for the 
temperature, it is found that 

Here 3, EW, Re are  given by equation (4.117) I and cAw is given by equation 

(4.125). 

The density and friction can be determined from equations (4.121) and 
(4.108) , (4.109). 

Nonequilibrium flow of an ideally dissociating gas [108]. In order to 
determine the dependence of the density on velocity it is necessary to establish 
relationships between the temperature and velocity and concentration, and between 
the concentration and velocity and temperature. The dependence of the tempera
ture on the velocity and concentration is not difficult to obtain from equation
(4.116), which was obtained without any assumptions as to the thermochemical 
state of the flow in the boundary layer, by solving it for the temperature: 
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In order to establish the relationship between the concentration and the 
velocity and temperature it is necessary to return to the conservation equation
of the atomic components, written in terms of Crocco variables. These equations 
can easily be obtained from equations (4.98) and (4.100) by substituting in them 
dp/d 5 = 0, Sci = 1. By combining in this way the simplified forms of equations 
(4.98) and (4.100) it is found that 

(4.129) 

For simplicity it will be assumed that the concentration is a function only of 
the velocity u, and is independent of the longitudinal coordinate 5 , i. e. , 
acA/ a [ = 0 (an implicit dependence on the physical coordinate x is retained, 
since cA = cA [u (x,y)]). A s  a basis for this assumption it can be noted that it 
is strictly satisfied if the motion in the boundary layer is frozen or  of the equili
brium type (see the previous subsections of the present section). Consequently,
it can be expected that the explicit dependence cA( 5 )  will be sufficiently feeble 
that it can be neglected *. 

With this assumption, equation (4.129) becomes 

(4.130) 

By integrating equation (4.130) twice and evaluating the integration constants from 
the conditions at the wall, it is found that /245 

(4.131) 

By using the boundary condition (4.124) and the conditions at the outer edge 
of the boundary layer (cA = cA e  when u = U e), a reIationship is obtained for 
determining the concentration of atoms at the wall in the presence of a surface 
catalytic reaction: 

* The principle proposed here as  the basis for considering nonequilibrium flow 
can be termed the principle of local similarity for a turbulent boundary layer by 
analogy with the well hown principle introduced by L. Liz for practical calculations 
of laminar boundary layers. According to this principle, the concentration and tem
perature (enthalpy) profiles at each cross section can be regarded as  being similar 
to the velocity profile. 
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(4.132) 


where A is determined from equation (4.125).
W 

Later it is more convenient to write equation (4.131) in the following form, 
which is easily obtained by using the condition at the outer edge of the boundary 
layer : 

H e r e  

(4.134) 


It follows from equation (4.133) that when the effect of the non-quilibrium natur ! 
of the dissociation process on the concentration distribution of atoms in the 
boundary layer is taken into account, this is equivalent to evaluating the _valueof 
I(:). In the special case of frozen flow in the boundary layer (wA = 0 ) ,  I(u) = 0 ,  

and the concentration distribution of the atoms in the boundary layer is given by 
equation (4.126). 

For determining the value of I(;), it can be written in the form 

(4.135) 


By converting the part of equation (4.135) within the integral sign to the universal 
coordinates (3.8) and substituting the expression for the mass rate of formation 
of the atomic component wA from equation (4.60), it is found that /246 

(4.136) 


Here 

(4.137) 
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It is not difficult to see that the quantity Cr represents the Damkdhler number, 
equation (4.102). The physical significance of this quantity was considered in 
detail in Section 22. When dissociation reactions are being considered, Cr is 
sometimes termed the recombination parameter. If this parameter is large, the 
flow will be of the equilibrium type, and if it is small, of the frozen type. 

The quantity dq/dq which appears in equation (4.136) is defined by equa
tion (4.104) in the turbulent core and by equation (4.106) in the laminar sublayer.
The friction parameter c is given by equation (3.8), and the equilibrium con
centration of atoms cf) is found from equation (4.68). 

The method of successive approximations is used for calculating the con
centration profiles from equation (4.133). Preliminary calculations are made of 
the boundary layer characteristics c,(u), T(u), p (u), cf and c for frozen and 
equilibrium flow (see the previous parts of the present Section). A s  a zero ap
proximation for the concentration of atoms it is possible to assume either the 
concentration of atoms in a frozen flow (the parameters of a frozen flow are sub
sequently denoted by the superscript f), i.e., cia) = cA (flyor  by the arithmetic 
mean of the concentrations in frozen and equilibrium flow, i. e. , cA(0)= 

1/2 ( c f )  -+ cA(e)) where the superscript e denotes an equilibrium quantity. The 
dependence of concentration o velocity is determined from equation (4.133) to a 
first approximation to give cAf i )  , and then the temperature and density T(1) and 
p ( I )  are determined from equations (4.128) and (4.121). From the known density 

/247distributions according to equations (4. log) ,  (3.8), (4.104) and (4.106), the val- 
ues of cf(I), (l), (d q/d q)(1), etc. , are determined. 

Figures 60 - 64 show the calculated 
results for the boundary layer flow on a 
wedge of half-angle 30" along which oxygen
flows at Uoo = 7 lan/sec with a pressure and 
temperature in the approaching stream of 

= 2.85 atm and T = 220°K *. The p a
wall temperature was assumed to be 720°K. 
The values of the characteristic parameters
and the recombination rate constant for oxy
gen were taken to have the values given in 
Tables 18 and 14. In these figures, the 
letters (e), (f) and (ne) refer respectively 
to the equilibrium, frozen, and nonequili
brium types of flows in the boundary layer. 

*The calculations were carried out by 0. K. 
the author. 

Figure 60. 

Zakharova at the request of 
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Figure 60 shows the dependence of the concentration of oxygen atoms on 
the velocity over the cross section of the boundary layer on an absolutely catalytic 
wall (kw = 00). In order to illustrate the process of convergence of the method of 

calculating a nonequilibrium flow, this figure also shows the curves (dashed) which 
are obtained in the various approximations (the numbers on the curves indicate the 
numbers of the approximations). A s  can be seen from Fig. 60, the convergence of 
the method is quite satisfactory. 

For  the same flow conditions, Fig, 6 1  shows the dependence of the tempera
ture on the velocity in the boundary layer; Fig. 62 gives the velocity profiles for 
equilibrium , frozen and nonequilibrium flows in the boundary layer (see equa
tions (4.103) and (4.105)). In addition, the velocity profile in an incompressible
fluid is also shown in Fig. 62 (see equation (3.4)); this profile is indicated by nc. -
Also given is a velocity profile calculated for the same external conditions and 
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conditions on the surface of the wedge as used for curves (e), (f) and (ne), but 
without taking dissociation in the boundary layer into account (see equation (3.99)). 
This profile is indicated by (c). The curves in Fig. 62 were obtained for kw = 00. 

r 

Figure 61. Figure 62. 

Figure 63. Figure 64. 
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Figure 63 shows graphs of the local friction coefficient on a wedge as 
functions of the longitudinal coefficient. It can be seen from the figure that in 
this case the friction in equilibrium flow appreciably exceeds (by about 1.3 
times) the friction in frozen flow. This illustrates that in computing drag it is 
necessary to quite accurately take into account the nature of the thermodynamic 
processes taking place in the boundary layer. 

Figure 64 gives the concentration of oxygen atoms in the boundary layer 
as a function of the velocity in the boundary layer on an absolutely noncatalytic
surface (kw = 0). The concentration distribution in a frozen stream was used as 
the zeroth approximation for calculating nonequilibrium flow in this case. It can 
be seen from this figure (notation is the same as in Fig. 60) that making allow
ance for nonequilibrium dissociation leads to a considerable change in the con
centration profile compared with frozen flow. 

The method for calculating friction in an  ideally dissociating gas which has 
been proposed in this section can be generalized if required to the case of flow of 
a partially excited dissociated gas, the properties of which were described in 
Section 21. 

transfer in a boundary layer-on a flat plate at Prandtl and- - -.-I25. Heat and mass r~~.~e-r~~~nt~r-o-m..~i-t-y- -.

- . .. .. . __i.- . - .. . 

It has been already mentioned (Section 22) that as a result of the increase in 
relative th ichess  of the laminar sublayer in hypersonic flows, molecular heat 
conduction and diffusion play an increasingly important part in heat and mass 
transfer processes in turbulent boundary layers. In some cases, this circumstance 
makes it necessary to take into account quite accurately the thermal and diffusional 
properties in determining heat and mass transfer to surfaces. 

To a first approximation, these effects can be taken into account by giving 
up the assumption that the Prandtl and Schmidt numbers a re  equal to unity,
assuming that these numbers are constant over the thickness of the laminar sub-
layer and equal to their values at the wall. However, if the laminar sublayer
occupies a substantial part of the total turbulent boundary layer (20 - 30% or more),
this approximation becomes inadequate. Actually, the Prandtl and Schmidt numbers 
in dissociating air depend on the degree of dissociation. Approximate evaluations 
made by Dorrens [921 for dissociating oxygen led to the following dependences for /250
these criteria on the degree of dissociation: 

(4.138) 
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Here co is the concentration of atomic oxygen. From these relationships it is 

not difficult to evaluate the dependence of the Lewis number on the degree of 
dissociation: 

(4.139) 


The results of calculations carried out 
according to these formulas are shown in 
Fig. 65. It can be seen that the Prandtl number 
varies relatively little with change in the degree 
of dissociation. A t  the same time, the Schmidt 
number varies by a factor of almost two. Sub
sequent comparison of these relationships with 

44-- - , 

! P;. ! more accurate results showed that this type of
I 
I ! behavior of the Prandtl and Schmidt numbers is 

6' 42 4.1 QG 48 l0 
I 1 

CA 

Figure 65. 

retained for air also. Thus, if in the laminar 
sublayer the change in concentration of atoms 
is such that the Schmidt number is subject to 
considerable change over the thickness of the 
sublayer, it becomes necessary to take these 
changes into account. 

Within the framework of the two-layer model of the turbulent boundary 
layer, the difference of the Prandtl and Schmidt numbers from unity leads to 
the fact that the thicknesses of the laminar sublayers for the dynamic, thermal 
and diffusion boundary layers a re  all different in the general case. It is not diffi
cult to show that by using the equations of motion, energy and conservation of the /251-
ith component in the laminar sublayer that 

(4.140) 


The subscripts Wt and "dc' refer respectively to 'ttherma171and '?diffusional" 
conditions. 

By considering (4.140) it can be seen that if Pr < 1 and Sc < 1 (which 
occurs in dissociating air), the thicknesses of the thermal and diffusional laminar 
sublayers will be larger than the thickness of the dynamic sublayer. In this case 
the thermal and diffusional sublayers occupy a part of the turbulent core with the 
logarithmic velocity profile (Fig. 66). Bearing this fact in mind, it is not difficult 
to evaluate the difference in the dimensionless velocities at the edges of the 
dynamic, thermal and diffusion boundary sublayers. Actually, if the velocity 
profile of an incompressible fluid (3.100) is assumed approximately for the 
turbulent core, and equation (4.140)is used, it is found that 
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Assuming that Pr = 0.72, Sc = 0.5, P 
pi = 11.5, it is found that 

8% 
'p It Id- 1,03, -= 1,07. PI 
'p1 'p1 


This approximate analysis shows 
that when Pr < 1and Sc < 1 (for air), 
there is no need to take into account dif

-. 
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Relation of total enthalpy to velocity and-concentration. Reynolds analogy. -D 5 2  
Enthalpy -o�recovery; . In-oraer to~esta'brisfi'anapproximate relationship between 
the total enthalpy, the velocity, and concentration, let us return to the energy 
equations in terms of Crocco variables, (4.97) and (4.99). 

For a f la t  plate (dp/dE = 0), and this equation assumes the form 

in the laminar sublayer, and 

(4.143) 

in the turbulent core. 

Some further simplifying assumptions can be made; it will be assumed that 
the total enthalpy is a function of the longitudinal velocity only, i. e. , H = H(u). 
On the basis of this assumption, it can be noted that it is exactly satisfied i f  the 
Prandtl and Schmidt numbers are  exactly equal to unity. In this case, as  was 
shown in the previous section, there is an integral energy equation (4.119) simi
lar to the Crocco integral. It can therefore be expected that at small deviations 
of the Prandtl and Schmidt numbers from unity the dependence of the total en
thaby on the longitudinal coordinate H(5) will be quite feeble. 

Apart from this assumption, it is also assumed, as previously, that the 
shear stress is constant across the layer, i. e., that T = const = T

W' 

With the use of these assumptions, equations (4.142) and (4.143) assume 
the following forms: 
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(4.144) , 

(4.145) 

By integrating equation (4.144) and determining the integration constant from 
the condition at the wall (q = 4~ when u = 0), it is found that 

Here 

(4.146) 


(4.147) 

is the heat flux at the wall. It is easy to see that equation (4.147)follows from 
the definition of the heat flux in a multicomponent mixture, equation (1.79), if 
only the transport of energy due to thermal conduction and mass diffusion are  
taken into account. 

By integrating (4.146) from 0 to u, and determining the integration con
stant from the condition that H = Hw when u = 0, a relationship is obtained be
tween the total enthalpy and the velocity and concentration in the laminar sub-
layer: 

2c
H = h,  + P r L  (Ur- / f w ) i i  

cI 

Here 2%/cf is the Reynolds analogy parameter 

(4.148) 

(4.149) 

c is the dimensionless heat transfer coefficient (Stanton number), Hr is theh 
equilibrium enthalpy of a thermally insulated wall, or the recovery enthalpy (the 
definitions of Hr and 2ch/cf will be given below, 

In the turbulent core the dependence of the total enthalpy on the velocity and 
concentration is found by.integrating equation (4.145)twice. The first integration 
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constant is found by assuming that the heat flux is constant across the boundary 

layer and equal to its value at the wall, i. e. , q = const = %. The second inte- 
/254 
gration constant is found from the condition at the outer edge, H - He when 
u -Ue. A s  a result it is found that 

Let us consider further the case when heat transfer between the gas and 
the wall is absent (hw = H,). By equating the total enthalpies from equations 
(4.148) and (4.150) at the edge of the laminar sublayer and solving the equation
which is obtained for Hr, it is found that 

(4.151) 


It should be noted that in obtaining equation (4.151), use was made of the approxi
mate relationship (3.150). The expression (4.151) for the recovery enthalpy Hr 
is quite general in the sense that it can be used for calculating equilibrium, 
frozen and nonequilibrium flows. 

If the recovery 'coefficient r is introduced as in a homogeneous gas, i. e., 

u,z (4.152)] I r  = h, $- r - 2 

an expression is obtained by comparing equations (4.151) and (4.152)for the 
recovery coefficient in a multicomponent gas mixture : 

(4.153) 


For determining the Reynolds analogy parameter the total enthalpies ac
cording to equations (4.148) and (4.150) are equated, and the resulting equation /255

is solved for this parameter, giving 

(4.154) 


The approximate relationships (3.150) and (3.159) are used in deriving equation 
(4.154). 
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By using equations (4.149)and (4.154), an expression can be obtained i 

for the heat flux at the wall: 
/ 

(4.155) 


From the definition of the total enthalpy, equation (4.89), and the condi
tion that the specific heat capacities of the individual components are  indepen
dent of temperature, an expression is found for the temperature: 

I' = ( H  -2I C,l$ -$)@Cicpi)-*, (4.156) 

The expressions obtained above for the total enthalpy in the laminar sub-
layer and turbulent core, the recovery coeffiLient, the Reynolds analogy param
eter, the heat flux and the temperature all contain the so far unknown concen
trations of the individual components. Thus, the problem reduces to determining 
the relationship between the concentration and the velocity in the laminar sub-
layer and in the turbulent core. The forms of these relationships are different 
depending on the thermodynamic state of the flow, i. e. , depending on whether 
the flow is equilibrium, frozen, o r  nonequilibrium. 

Equilibrium flow of an ideally dissociating gas [log]. Passing now to the 
consideration of the equilibrium flow of an ideally dissociating gas, it is useful 
to note that the difference in enthalpies of the atomic and molecular components /256-can be regarded as approximately equal to the dissociation energy, Actually, 
bearing in mind that 

it is found that 

(4.157) 


For gases such as oxygen and nitrogen, this assumption given by equation 
(4.157)does not lead to appreciable errors  in calculation, 

Taking equation (4.157)into account, the following expression is obtained 
from equation (4.148)for the total enthalpy in the laminar sublayer: 

2 c -
I'" e T  = zw-+ Pr +( I / ,  - / i W )u + 

I - (4.158)
(1 - Pr) Puz - (Le - 1)(cA- cAJ .  
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The dimensionless quantities gWy Er and 3 are defined by equation (4.117). 

The Reynolds analogy parameter 2ch/cf and the recovery enthalpy Hry 

which in the general case are expressed by equations (4.154) and (4.151), be
come now 

(4.159) 


- II, -/ I ,  == -D = h,+~Pr ' " [ (Le - l)(cAl -cA,)Ir. (4.160) 

It should be noted that in equations (4.159) and (4.160) the subscript r indicates 
the parameters determined for the case when heat transfer between the gas and 
wall is absent. 

In an ideally dissociating gas the expression for the heat flux (4.155) 
becomes 

If use is made of the relationship (4.159), the total enthalpy in the turbu
lent core (4.150) can be written 

Analogous rearrangements of the expressions for the total enthalpy in the 
laminar sublayer (4.158) lead to the following result: 

(4.163) 


When Pr =: Le =: I,equations (4.162) and (4.163) reduce to equation (4.114) of 
the previous section. 

In the present case the dependence of the concentration of atoms on the 
pressure and temperature is expressed by equation (4.115). 

Equations (4.162), (4.163), (4.156), and (4.115) make it possible in prin
ciple to calculate the dependence of the enthalpy, temperature and concentration 
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on the velocity in the boundary layer, However, TO;' convenience in carrying out /
the calculations it is advisable to make some rearrangements. By substituting 1the expression for the enthalpy h (equation (4.74)) into the left-hand part of 
equation (4..163) and making some simple rearrangements and making use of / 

equation (4.115), the following expression is obtained for the relative velocity u: 
-lG2- au - b = 0 ,  (4.164) 

where 

5,"4-(Le- 1)cAw - Le[1. f  -Pe 2 exp ($)I)-"*, } (4.165)
. P d T  

By solving equation (4.164), a relationship between the velocity and temperature 
in the laminar sublayer: 

Similarly, by substituting equation (4.74) into the left part of equation 
(4.162) and making use of equation (4.115), an expression is obtained relating 
the temperature and the velocity in the turbulent core: 

-_
pz2 - ai - c = 0, (4.167) 

where a is given by the first part of (4.165), and c has the form 

(4.168) 


By solving equation (4.167) for 6, the dependence of temperature on velocity in 
the turbulent core becomes 

(4.169) 


In equations (4.16s)and (4.169) the sign in front of the root is selected 
from the condition that u 5 1. 

It is much simpler to determine the concentration and temperature during 
flow along a thermally insulated wall than in the case of a heat conducting wall, 
since the coefficient a in equations (4.166) and (4.169) tends to zero. In this case, 
the value of the temperature at the edge of the laminar sublayer is given by the 
condition 
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(p;; = b) , ,  (4.170) 

where the dimensionless velocity at the edge of the laminar sublayer GL is 
given by equation (3.31). 

When calculations are being carried out by this procedure, it is necessary 
to have as initial data information on the parameters at the outer edge of the 
boundary layer We, Te, pe) and at the wall (T ). The concentration of atoms at

W 
the outer edge (cAe) must also be specified. If it is assumed that the external 
flow is in an equilibrium state, cAe can be determined for the given value of Te 
and pe from equation (4.115). Similarly, the concentration of atoms at the wall 

Aw can be determined from the known values Tw and pe. In the case of thermo
chemical equilibrium being considered, the presence of catalytic processes on 
the wall occurring with a finite velocity will obviously not affect the concentra
tion distribution in the boundary layer. 

The calculation of the profiles of the parameters in the boundary layer 
according to the relationships derived above can be carried out by the method 
of successive approximations, The quantity which must be made more precise 
in the course of the calculation can be seen from equation (4,165) to be the con
centration at the edge of the laminar sublayer, cAL. A s  the zeroth approxima
tion for cAL it is possible to assume the value obtained from a calculation with 
Pr = Sc = 1(see the previous Section). From the same calculation it is possible 
to obtain the value of the friction parameter t ,  which is rewired as  a starting 
point for determining the velocity at the edge of the laminar sublayer iL(equa
tion (3.31)). In this connection it may be noted that usually it is not necessary to 
obtain successive approximations to uL’ since the small differences of the Prandtl 
and Schmidt numbers from unity cause only small effects on the friction parameter 
t. 

A f t e r  determining UL, equation (4.166) is used for 0 < < iL and ewa
tion (4.169) for cL < u < 1, making it possible to establish the relationship 
between the temperature and velocity in the boundary layer to the first approxi
mation. In calculating flow along a plate at zero angle of attack, the value of the 
temperature in equations (4.165) and (4.168) must be selected in the range be
tween the wall temperature and the stagnation temperature. In calculating flow 
along a plate at some angle of attack, when the temperature value in the boundary
layer can be assumed equal to the temperature after the heat of the density jump, 
the temperature value must be selected in the range between the wall temperature 
and the temperature at the outer edge (in this case, the temperature in the bound
ary layer usually varies monotonically). 

Once the relationship between the velocity and temperature is established 
with the use of equation (4.115), the relationship between the concentration and 
velocity can then be found, etc. 
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From the known distributions of the concentration and temperature, the 
dependence of density on velocity .(equation (4.121)) can be found, and then the 
local friction coefficient (4.109)). Knowing the friction coefficient and the ' parameters at the wall, the edge of the laminar sublayer, and at the outer edge 
of the boundary layer, the heat flux can be determined from equation (4,161). 

The Prandtl, Schmidt and Lewis numbers can be found for the given con
centrations of atoms at the wall from the approximate formulas of Dorrance, 
equations (4.138) and (4.139), using Pro= 0.7, Sc, = 0.5, Le, = 1.4. 

Frozen flow of an ideally dissociating gas on a catalytic wall [110]. In the 
previous Section it was shown that in th'e case of frozen flow%naboiiiidary layer 
(wA = 0) and with the assumption that the Schmidt number is equal to unity, there 

is a special integral relationship for the conservation of the ith component, equa
tion (4.126), according to which the concentration depends only on the velocity, 
i. e. , cA = cA(u). In the case of frozen flow now being considered along a flat 
plate at Schmidt numbers different to unity, it will be assumed approximately 

that the concentration primarily depends only on the velocity and is independent 

of the longitudinal coordinate. It can be expected that when the deviation of the 

Schmidt number from unity is small, the dependence of the concentration on the m1
-longitudinal coordinate cA (0will be quite feeble. In addition, the simplifying 

assumption (3.1) that the shear stress is constant across the boundary layer 
( T = const = 7 

W 
) is made. 

Using these assumptions, the following equation is obtained from equations 
(4.98) and (4.100) for determining the concentration in the laminar sublayer and 
in the turbulent core: 

(4.171) 

Equation (4.65) is used as  a boundary condition for the concentration at the wall, 
assuming that the order of the catalytic reaction n is equal to unity. By making 
some simple rearrangements, this expression is reduced to the form 

T,u  (+)== p,k, sc UeCAw. (4.172)
W 

When equation (4.171) is integrated once and the equation (4.172) is used, it is 
found that 

(4.173) 

When (4.173) is integrated and the integration constant is determined from the 
condition at the wall, (cA = cAw at u = 0), the concentration is found as a func

tion of velocity in the laminar sublayer 
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CA = CA," (1+ sc  n (4.174) 

The derivative of the concentration with respect to the dimensionless 
velocity at the edge of the laminar sublayer on the side of the turbulent core, 
(dcA/d')G = 6 + 0 9  is found from the condition that the diffusion fluxes of the 

L 
atomic component must be the same on both sides of the boundary between the 
core and the sublayer: 

(4.175) 


Using this equation and the condition at the outer edge of the boundary layer,
cA = cA e  when u = Ue, a relationship between the concentration and velocity in 
the boundary layer (in the turbulent core) : 

c,, = rAc- rAurAlo(1 - 12). (4.176) 

By equating the concentration values from equations (4.173)and (4.176)at the 

edge of the laminar sublayer, an expression is obtained for the concentration of -

atoms at the wall as  a function of the catalytic recombination parameter A * 

/262 

W' 

= C A e ( l  + AwSc'/.>-l. (4.177) 

In the derivation of equation (4.177)use was made of the following approxi
mation. 

1 - ( 1  - S C )  liz =SC2/J. (4.178) 

If Sc = 0.5, the grror in calculating with equation (4.178)does not exceed 
f 10% over the range uL from 0.6 to 0.86. 

Equations (4.174)and (4.176)can be rearranged to a form not containing
the catalytic recombination parameter Aw by eliminating this parameter with the 
use of equation (4.177). After some simple rearrangements, this gives 

The first of these equations is valid in the laminar sublayer, and the second in 
the turbulent core, When the Schmidt number is equal to unity, these equations
reduce to equation (4.126)obtained earlier. 
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From equations (4.174), (4.176), and (4.177) it follows that when kw = 0 

(corresponding to flow along an absolutely noncatalytic wall), cAw 
= c

Ae’  i. e. , 
the concentration of atoms in the boundary layer is constant over the cross 
section and equal to the value at the outer edge, When kw - ao, which corre

sponds to flow along an absolutely catalytic wall, cAw = 0, i. e. , all the atoms 
diffusing into the layer recombine. 

By using the equations (4.174) and (4.177), and also equations (4.160), 
(4.159) and (4.161), which a re  also valid in the case of frozen flow, expressions 
are  obtained for the recovery enthalpy, the Reynolds analogy parameter and the 
heat flux in a frozen turbulent boundary layer on a flat plate with arbitrary cata
lytic properties on the surface: /263 

(4.182) 

In equations (4. 180) to (4.182) the approximation 

1 + (Le -I)&, (4.183)=Le‘/., 

is used, and the following function is introduced: 

(4.184) 

It is not difficult to see that for an absolutely catalytic wall (k
W 
-a),the func

tion $w - 1, while for an absolutely noncatalytic wall (kw = 0), zjW- 9. 

If the effects of the catalytic wall on friction (c+ and the Prandtl and Lewis 

numbers are not taken into account, by using equation (4.182) it is easy to obtain 
an equation giving the ratio of the heat flux for an arbitrary rate of the catalytic 
recombination to the heat flux on an absolutely catalytic wall: 
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Figure 67. 

Equation (4.185) makes it possible to evaluate the effect of the catalyzing 
ability of the wall on the value of the local heat flux. Figure 67, which is of an 
illustrative nature, shows the results of calculations according to equation (4.185)
for the flow of air  along a flat plate. The calculations were carried out for a 
pressure corresponding to a height of 45 km above the surface of the earth and 
a wall temperature Tw = 700°K. Along the abscissa is plotted the rate constant 
of the catalytic recombination and ranges of the constant kw for a series of 
materials a re  indicated (for details see Fig. 58). It can be seen from Fig. 67 
that the catalyzing ability of the wall has a very powerful effect on the value of 
the heat flux. This fact makes it possible to conclude that by suitable selection 
of the material for lining the apparatus it will  be possible to considerably de
crease heat transfer to the surface. The fact that the curve for a flight velocity
of 2.5 km/sec lies below the curve for 3 km/sec arises because nitrogen begins 
to dissociate after all the oxygen in the outer stream is already dissociated *. 

Let us establish a further relationship between the temperature and veloc
ity. By substituting the expression for the enthalpy of an ideally dissociating gas, 
equation (4.74), into the left-hand part of equation (4.163) and solving the result
ing equation for the temperature, the dependence of temperature on velocity in 
the laminar sublayer is found to be 

T = (4  + CJ’ +Pr“3 [lie+p Pr”s-E,,,+ (4.186) 
(~e’’’ -I) s ~ ” J ~ ~ , + ~ IU- ~rTjuZ+ (Le -I) cAw-Le cA). 

*Analogous results were obtained for  the laminar boundary layer close to 
a forward stagnation point in the work of Goulard [1071. 
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Here cA and cAw are given by equations (4.174) and (4.177). 

In a similar way an expression for  the dependence of temperature on 
velocity in the turbulent core is obtained from equation (4.162) : 

(4.187) 

Here cA and cAw are given by equations (4.176) and (4.177). 

The dimensionless quantities Ee, fiw, p, T in equations (4.186) and 
(4.187) are given by equations (4.117) and (4.162). 

From the known dependences of temperature on velocity and equation 
(4.121) it is possible to find the density as a function of velocity, which in turn 
makes it possible to determine the local friction coefficient by means of equa
tion (4.109). 

Suitable correlation equations for calculating the friction coefficients 
during frozen flow in a boundary layer were obtained by Dorrance [lll]on the 
basis of friction calculations over the following wide ranges of the parameters 
(105 5 R~ 5 1 0 8 ;  o 5 M~ 5 4; 0.04 -< TwDe 5 1). This formula has the form 

(4.188) 

Here  cfo is the friction coefficient calculated without taking the effects of dis- h 67 
sociation (but making allowances for the effects of the Mach number and tem
perature factor. The results obtained from equation (4.188) differ from the 
exact results by less than 4%. It follows from equation (4.188) that dissociation 
leads to changes in the friction coefficient which do not exceed & 22% of the value 
of cfo. In addition it is easily seen from equation (4.188) that an increase in the 
catalyzing ability of the wall (cAW-+0) leads to an increase in the friction coef

ficient, 

Figures 68 - 72 show the results of calculations of the boundary layer 
characteristics during the flow of dissociating oxygen along a plate, using the 
methods given above [112], 

Figures 68 and 69 show the local friction coefficient as a function of the 
Reynolds number for the two Mach numbers, M = 4 and M = 10. In the cale e 
culations it was assumed that T = 3600"K, p = 1atm, Pr = 0.72, Le = 1.4,e e 
cAw = 0, The calculations of friction without taking dissociation into account 
were carried out by the method given in Section 12. A s  can be seen from the 
graphs, the friction coefficients for frozen gas flows differ from those calcu
lated for the same conditions but in the absence of dissociation by no more than 
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20%, which is in good agreement with the results of Dorrance (equation (4.188)). 
In the case of equilibrium dissociation this difference can reach 40%. 

IWithout dissociation ---Frozen flow 
Equilibrium dis

sociation 

Me =4 1I __-
7Y7 1118 rug 

1f.z 

Figure 68. Figure 69. 

Figure 70. Figure 71. 

Figures 70 and 71 show the concentration and temperature as  functions of 
the velocity in frozen flow (curves A ,  E) and in equilibrium flow (curves C,  D) 
in the boundary layer, calculated for the conditions: Me = 2 . 2 ,  Te = 3600"K, 
TW = 500°K, cAe = 0.3, cAw = 0. Curves A and C, which were obtained by Dor
rance [113] are shown in Figs. 70 and 71 for comparison. The difference between 
curves E and D calculated by the procedure of the present Section and Dorrance' 
curves A and C is due to the fact that in his work Dorrance used relationships 
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between the total enthalpy, concentration and velocity which were obtained for 
Pr = Sc = 1 (equations (4.114) and (4.126)), so that in many ways Dorrance's /268-
method is analogous to the methods discussed in Section 24. Dorrance took into 
account the difference of the Prandtl and Schmidt numbers from unity only in 
setting up the expression for the Reynolds analogy parameter and by directly 
introducing the recovery coefficient, It should also be noted that in Dorrance's 
work the contribution of the vibratory degrees of freedom to the heat capacity 
of the molecules is not taken into account, 

Figure 72 shows the dependence of the 
heat transfer coefficient on the Reynolds num
ber obtained by the method being discussed 
(frozen flow) for the conditions: Me = 2, 
T

W 
De = 0.1, cAe = 0.31 (the value of Ch-1 is 

plotted on the ordinate axis). For comparison, 
the relationship calculated by Dorrance 
(dashed line) is also given on the same figure.
The differences between these theoretical re
lationships is due to the same reasons pointed 

Iff2I I , ' R o s e  et al. 
1 -

out in considering Figs. 70 and 71, as well a s  
7b 5 M6 107 708 the fact that in Dorrance's method the formula 

nc- from the semiempirical Prandtl theory was 
used in calculating the friction, instead of the 

Figure 72. 	 von K & r m h  formula which is used in the pres
ent method. Figure 72 also shows the experi
mental points obtained for heat transfer mea

surements by Rose et al. [1141on a cylinder with a spherical head. The mea
surements were carried out in the zone where the longitudinal pressure gradient 
was close to zero. The experimental points on the graph show a large degree of 
scatter; nevertheless, the agreement between the experimental data of the cal
culated results can be considered satisfactory. 

Nonequilibrium flow of an ideally dissociating gas. The results of the cal
culations of equilibrium and fFoZx f-yers given in the subsec
tions above show conclusively that the thermochemical state of the gas can have 
an appreciable effect on drag. It is obvious that the nature of the flow in the 
boundary layer will have an even more important effect in calculating the rate of 
heat transfer. Of course it is possible to estimate the heat flux at the surface of 
the body in the two limiting cases considered above - equilibrium and frozen flows. 
However, it is impossible to solve the problem of the nature of the flow in the 
boundary layer using the methods given in these sections, In many cases of prac
tical importance it becomes necessary to evaluate heat transfer during the occur
rence of dissociation reactions having finite velocities commensurate with the rate 
of diffusion, which leads to a nonequilibrium type of flow in the boundary layer, 
Nonequilibrium flow of an ideally dissociating gas was considered in the previous 
section assuming that the Schmidt and Prandtl numbers are  equal to unity. A s  
shown repeatedly above (Chapter m)it is necessary to take into account differ
ences of the Prandtl and Schmidt numbers from unity in calculating heat transfer. 
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The general expressions for the heat flux %, recovery enthalpy Hr 
Reynolds analogy parameter 2ch/cf, and the relationship between the total en
thalpy and concentration and velocity for arbitrary Prandtl and Schmidt numbers 

were established at the beginning of the present section, In order to solve this 

problem it remains to establish the relationship between the concentration and 

velocity. There a re  reasons based on the arguments discussed during the con

sideration of nonequilibrium flow for Pr = Sc = 1 (Section 24) and for frozen 

flow for Pr # Sc # 1 (Section 25) for making the simplifying assumption that the 

concentration depends only on the velocity in the boundary layer and is indepen

dent of the longitudinal coordinate, i. e. , cA=cA(u). In addition the usual F 70
-
assumption is made that the shear stress is constant across the boundary layer, 
i. e. , T = const = T

W' 
With these assumptions, ecpations (4.98) and (4.100) 

assume the following forms : 

(4.189) 


The first of these equations is valid in the laminar sublayer, and the second in 
the turbulent core. Integrating the first of the equations (4.189)using the bound
ary conditions (4.124), it is found that 

dc . 
-2== sc -4 

W 
c 

A W  
- s c  I ,  (6). (4.190)

dii 

Here -

(4.191) 


and the quantity Aw is given by the second of equations (4.125). 

It should be noted that the concentration of atomic components at the wall 
(cAJ is still an unknown quantity and will be determined later. 

By integrating equation (4.190) and determining the integration constant 
from the condition at the wall (cA = cAw when u = 0), the concentration distribu
tion in the laminar sublayer is found as 

CA4= c.4w(.1 -t- sc -4 ,,,ii)-sc I ,  (ii), (4.192) 

where 
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Let us now pass to the determination of the concentration profile in the 
turbulent core, By integrating the second of equations (4.189) once, it is found 
that 

(4.193) 

Here L is the dimensionless velocity at the edge of the laminar sublayer, de-	 /27 1 
fined by equation (3.31). 

The derivative of the concentration with respect to the dimensionless 
velocity at the edge of the laminar sublayer on the side of the turbulent core, 
(dcA/dU); = + 09 is determined from the condition that the diffusion fluxes of 

L 
the atomic component on both sides of the interface between the sublayer and 
turbulent core (4.175) must be equal, Using this condition and equation (4.190),
it is found that 

(4.194) 

By substituting equation (4.194) into equation (4.193) and carrying out a 
further integration, and then determining the integration constant from the con
dition at the outer edge (cA = cAe when ci = l), the concentration distribution in 

the turbulent core is found to be 

where 

By equating the concentration values from equations (4.192) and (4.195) at the 
boundary between the sublayer and turbulent core and solving the resulting equa
tion for the concentration at the wall, the following expression is obtained: 

Equation (4.178) is used in the derivation of (4.196). 
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The concentration distribution in the laminar sublayer (4.192) and in the 
turbulent core (4.195) are sometimes more convenient to use in a form not con
taining the catalytic recombination parameter Aw. By eliminating A

W 
from equa

tions (4.192) and (4.195) using equation (4.196), we find for the laminar sublayer b x  

CA = C A w . t S C ' ~ ' ( C A e - C A w ) i i + S C ' ~ ' [ I , ( . I )  f S C I ,  (ii*)+ 
(4.197)( I - 4 , ) l L ( I 3 ) ] i i - - S C I I  (E). 

and in the turbulent core 

c* = C * c - S C 1 " ( C A c - C A ~ ) ( l  - i i ) + I , ( l ) - I T ( i i ) 

sc"a [ I ,(1) + sc 1,(iz, )] (1 -E) + SC"Jii, 1,(GI)(1 - ii). (4.198) 

In frozen flow (wA = O ) ,  the functions IT, IL and f tend to zero, and equa
tions (4.197) and (4.198) reduce to equation (4.179) of the present section. 

The dimensionless integral complexes IL and IT (4.192) and (4.195)) 
which appear in the concentration distributions characterize the overall ''strength''
of the sources of formation of atomic components included in some volume, the 
extent of which in the direction of the y axis is determined by the limits of inte
gration, while the base area can be taken to be unity. The expressions for these 
complexes can be obtained similarly to the way in which the expression for the 
complex I($ (4.136)was obtained in the previous section. Omitting the simpler
details, it need only be said that the final expressions for these complexes are: 

(4.199) 


Here b' is the friction parameter (3.8), C r  is the recombination parameter 
(4.137), Rem is the Reynolds number (4.137), dq/&p is a quantity defined by 
equation (4.104) in the turbulent core and by equation (4.106) in the laminar sub

/273layer. The equilibrium concentration of atoms c t )  is given by equation (4.68). -
The complex iL(<)which is still required for calculating the concentration 

distribution is given by 

d l ,  ( h )  (4.201)1, (li) = --da-. 

The value of the velocity at the edge of the laminar sublayer GL can be found 
from equation (3.31). 
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The calculation of the concentration profiles by equations (4.197) and 
(4.198) or (4.192) and (4.195) can be carried out by the method of successive 
approximations. The calculation procedure is the same as  in the calculation of 
nonequilibrium flow when Pr = Sc = 1 (see Section 14). 

In equations (4.197) and (4,198) the first two terms in the right-hand 
parts give the contribution of diffusion to the concentration distribution, and all 
the remaining terms containing the complexes IL, IT, IL characterize the con
tribution of the chemical reaction to this distribution, The interaction of the 
diffusion and chemical reaction on one another appears through the concentration 
at the wall, cAw, equation (4.196), which depends on the rates of both processes, 
The nature of the flow in the boundary layer is determined by the relative con
tributions of the diffusion and chemical reaction processes in the concentration 
distribution. With a value of the recombination parameter Cr = 00, the contri
bution of the chemical process is infinitely large compared with the diffusion 
contribution (the sum of the terms containing the integral complexes in equa
tions (4.199, (4.198) will be infinitely large compared with the diffusion term). 
In this case there will be equilibrium motion, and the concentration distribution 
can be determined from the condition wA = 0. In the other limiting case when 
the recombination parameter is equal to zero (Cr = 0), the diffusion process 
will be controlling (frozen flow). This, the object of the calculation reduces to 
establishing the roles played by the diffusion process and chemical reaction in 
the transport processes in the boundary layer. 

Once the concentration distributions (4.197), (4.198) are  known, it is not 
difficult to obtain expressions for the Reynolds analogy parameter, the recovery
enthalpy, and the heat flux during nonequilibrium flow in the boundary layer. /274
Equations (4.159) and (4.161) are  used for this purpose, substituting in them the 
value of cAL from (4.197). 

A s  a result it is found that 

(LeZ"-1)sc"3( C A C  - C A W )  + (Le"%-1)SC''r [ I ,(1)+ 
S c I l ( i i l ) + ( I - ~ l ) ~ ~( ~ ~ ) l - - ( L e - I ) S c I ,  (n , ) } .  (4.204) 
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The value of the concentration at the wall in equations (4.202) - (4,204) is 
determined from equation (4.196), and the integral complexes IT’ ‘L’ fL by 
equations (4.199) - (4.201). The subscript r in equation (4.203) indicates the 
condition of a thermally insulated wall. 

The enthalpy distribution in the boundary layer is determined from equa
tion (4.163) in the laminar sublayer and (4.162) in the turbulent core after sub
stituting in them from equations (4.197) and (4.198) respectively. 

The temperature distribution corresponding to a given enthalpy distribu
tion is not difficultto obtain from equation (4.74), which can be solved for the 
temperature. A s  a result it is found that 

In addition, from equations (4.121) and 
(4.109) it is possible to determine the density 
in the boundary layer and the local friction 
coe�flcient on the wall. 

Figure 73 gives the results of calcula
tions of the local heat flux on a wedge with a /275-half-angle of 30°, along which oxygen flows 
with a velocity of Uo0 = 7 km/sec at a tem
perature and pressure in the approaching 
stream of T = 220°K and pe = 2 . 8 5 ~10-4 
atm. The wall temperature was assumed 
equal to 720°K. The heat flux calculations 
for frozen (see equation (4.182); dotted lines)
and nonequilibrium (see equation (4.204) ; 
solid curves) flow in the boundary layer were 
made for a series of values of the catalytic
recombination parameter A 

W l  
in the range 

0 to  a, (this parameter differs from the cata
lytic recombination parameter Aw (see equa
tion (4.125)) used in this section only by
having an additional multiplier (Awl = 

Sc 2/3Aw)). 

(4.205) 
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Figure 73. 

It should be noted that a value of the parameter Aw l  = 0 corresponds to flow 
along an absolutely noncatalytic surface, while a value of Awl = 00 corresponds to 
flow along an absolutely catalytic surface. The value of the heat flux during equi
librium flow (the chain-dotted curve) was determined from equation (4.161). 
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It should also be noted that the value of the local friction coefficient which 
is required for calculating the heat flux according to equations (4,161), (4.182) 
and (4.204) was calculated by the method proposed in the previous Section (i.e., 
with the assumption that the Prandtl and Schmidt numbers are  constant and equal 
to unity). 

26. Caiclusions 

It is not difficult to see that the methods for calculating friction and heat 
transfer in turbulent boundary layers of dissociating gases which are contained 
in this chapter represent further developments of the methods of calculating 
flows of homogeneous gases contained in Chapter 111(Sections 1 2  and 15). In 
addition, it is also necessary to mention that there is a series of works by 
Soviet and foreign authors in which the approach to the problem of the turbulent 
boundary layer in a dissociating gas differs to a greater o r  lesser degree from 
the approach taken in this Chapter. 

The case of equilibrium dissociation in a turbulent boundary layer on a 
flat plate was considered by S. I. Kosterin and Yu. A .  Koshmarov [115]. A s  a 
basis for the investigation, they assumed a model of an ideally dissociating gas 
and the semiempirical theory of Prandtl. The Prandtl and Schmidt numbers and 
their turbulent analogs were assumed equal to unity. In many respects, the 
method of Kosterin and Koshmarov is analogous to the method proposed in 
Section 24. 

The effect of equilibrium dissociation on friction and heat transfer on a 
flat plate with Prandtl and Schmidt numbers different to unity was considered 
in a paper by I. P. Ginzburg [116]. The semiempirical theory of Prandtl was 
used in this work for calculating friction. 

A method for calculating skin friction and heat transfer on a flat plate for 
equilibrium and frozen flows was proposed by Dorrance. The main features of 
this method and some of the calculated results have been considered in Section25 
(see the discussion of Dorrance's results). 

The calculation of heat transfer from a nonequilibrium turbulent boundary 
layer to a catalytic boundary surface was carried out by Kulgein [117]. In this 
paper the nonequilibrium nature of the dissociation process was taken into 
account only in the laminar sublayer, while in the turbulent core the flow was 
assumed to be of the frozen type. Calculations of heat transfer for various flow 
conditions in the external stream and at the wall were carried out on a electronic 
computer. 

The methods of calculating friction and heat transfer in an ideally dis
sociating gas (binary mixture of atoms and molecules) which a re  proposed in 
Sections 24 and 25 can be generalized without difficulty to the case of flowing 
multicomponent mixtures. With this in mind, in Section 25 particularly, ex
pressions were obtained for the total enthalpy, Reynolds analogy parameter, 
recovery enthalpy and heat flux in a multicomponent mixture. The calculation 
of the concentration fields in equilibrium and frozen flows in multicomponent 
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mixture does not differ in principle from the calculations of the same fields. 
in binary mixtures, In order to calculate nonequilibrium flows of multicom
ponent mixtures it is necessary to have data on the mass rates of farmation 
of the components, which a re  contained in Section 20 of Chapter IV. 

These methods are easily generalized to the flow of partially excited 
dissociating gases, the properties of which were described in detail in Sections 
20, 21. 

Finally, with the approximations made in Sections 17, 18, and using the 
formulas obtained in Sections 17, 18 of Chapter Tv, it is possible to calculate 
friction and heat transfer in the presence of longitudinal pressure drops. The 
expressions for the integral thickness and the form parameter H* which are 
needed for this purpose a re  given in Section 23. 

The almost complete absence of experimental data on the boundary layer 
characteristics in dissociating gases makes it impossible to carry out evalua
tions of the accuracy of the calculation methods proposed, but the good agree
ment between the calculated and experimental data in the absence of dissociation 
(Chapter III) provides confidence that the methods of Chapter IV, which are  
merely further developments of the methods of Chapter 111, will also give satis
factory results, 
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CHAPTER V 

TURBULENT BOUNDARY LAYERS IN THE PRESENCE 
O F  MASS TRANSFER BETWEEN THE 

GAS AND A SOLID SURFACE 

27. Introduction 

In chapters 111 and Tv we considered the properties of turbulent boundary 
layers formed on bodies of various shapes in the absence of mass transfer be
tween the gas and the solid wall. Processes of mass transfer between the gas 
and surface begin to play an important part in the motion of bodies at very high 
supersonic velocities in the dense layers of the atmosphere. The powerful heat
ing can lead to changes in the aggregate state of the solid: it can melt o r  evap
orate, with subsequent entrainment of the surface material by the gas stream. 
The first information on mass transfer during the motion of bodies at very 
large supersonic velocities was obtained more than forty years ago in the study 
of meteorites. In the last decade, interest in this problem has increased still 
more as a result of the development of rocket and space technologies. The 
phenomena accompanying the heating of moving bodies at very high tempera
tures have been the subjects of careful experimental and theoretical investiga
tions. One of the most important outcomes of these calculations was the estab
lishment of the fact that it is possible to use special transferrable coatings 
for the thermal protection of the forward parts of rockets and other space 
apparatus. A t  the present it is obvious that thermal protection of hypersonic 
apparatus by means of transferrable coverings is the most effective method 
from the point of view of weight and constructional simplicity. An important 
part is played by mass transfer in the cooling of the walls of combustion cham
bers, supersonic air samplers, nozzles of rocket motors, etc. 

A s  the heat protecting coverings wide use is made of constructional plas
tics , consisting mainly of thermo-reactive phenol-formaldehyde and epoxide /279-melts [1181. 

A s  fillers for reinforcing plastics, use is made of textolite, glass
textolite, asbestos, silicon, refractory oxides of magnesium, aluminum, nylon, 
terylene, and other materials. 

There has recently been considerable interest in materials which break 
down at relatively low temperatures (up to 1000°K): Teflon, capron, polyethy
lene, and organic glasses. In the break-down of heat-protecting coverings made 
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of these materials, gases of various molecular weights appear in the boundary 
layer, and in many cases these lead to a powerful "injection effect", causing a 
reduction in the heat flux to the surface. 

A t  present a large number of heat protecting materials have been studied 
and are  widely used. However, in spite of the large number of these materials,
it has been noted that the breakdown of heat-protecting coverings occurs mainly 
as  a result of the following physico-chemical processes: surface pyrolysis of 
the binder, depolymerization, evaporation, sublimation, combustion, melting, 
or erosion. In many cases, beyond some definite rate the breakdown of the 
plastic covering reaches the rate of combustion of the coke residue of the binder 
material. A t  large percentage contents of glass and quartz fillers in the mate
rial, an important part is played by transport processes in the liquid phase. A s  
an example of such heat-protecting coverings, mention may be made of asbestos
textolite coatings, in which the following processes a re  observed during heating: 
coke formation, dehydration of the asbestos, chemical interaction of the coke 
residue with oxygen and nitrogen, sublimation of the coke residue, spreading of 
the melt of silica fibres (Si02), and evaporation of the Si02melt. A s  a result of 
these processes, the composition of the gas mixture in the boundary layer be
comes very complicated [1191. Depending on the conditions, the mixture can 
contain the following components: 02,0, N2, N, C,  C2, CB, CO, C02,  CN, 
HCN, H2, H, Si, SiO,, SiO, Sic, SiC2, Si2C, etc. 

The process of surface breakdown by means of these mechanisms, all to
gether or only some of them, has been termed mass entrainment. One of the 
possible models by which the mass entrainment process occurs is shown in 
Fig. 74 a. 

Extemal stream External stream 
-

Boundary layer Boundary layer 

U- ll-
Coke vapor Blowing of gas 

Zone of thermal 
- _ - ,structural reaction 1 Reservoir with gas 

Figure 74. 

In some cases, cooling of surfaces is effected by means of forced intro
duction of mass into the boundary layer through a porous wall (Fig. 74b). Air, 
water vapor, light gases (hydrogen, helium) and other gaseous and gas-forming
materials can be used as the coolants in the porous cooling process * . 

*A detailed description of the various methods of cooling surfaces sub
jected to high temperatures can be found in the book by Avduyevskiy and 
Danilov [120]. 

b 8 0-

225 



The presence of a transverse mass flux in the boundary layer caused by 
the injection of mass through the porous wall, sublimation of the solid surface, 
o r  evaporation of a liquid film causes a greater effect on the structure of the 
boundary layer (velocity profile, temperature profile, etc. ) the more intense 
is this flux. Together with the change in the local characteristics of the bound
ary layer, changes also occur in its integral characteristics; blowing, in par
ticular, usually leads to a decrease in friction and the heat flux at the wall. 
The only exception is in cases when the material introduced into the boundary 
layer enters into chemical reactions with the components of the main stream, 
and the heat liberated in this way may ultimately lead to an increase in the heat 
flux at the wall. The phenomena of reduction of the heat flux and friction during 
the injection of material into the boundary layer is sometimes termed the 
"blocking effect". 

The present chapter is concerned with a consideration of some of the 
phenomena described above, and a discussion of the methods of calculating 
friction and heat transfer during injection of mass into the boundary layer. 
Friction will be considered close to a porous (or subliming) plate along which 
a supersonic gas stream flows, in the absence of chemical interaction between 
the injected material and the gas of the main stream. 

In conclusion it can be mentioned that the solution of the problem being 
considered is still very far from being complete either experimentally o r  
theoretically. Essentially only the first results have been obtained, and many 
theoretical and experimental aspects of the problem remain unclear. Bearing 
this in mind, it seems advisable to give a brief outline of the main directions 
in the development of this part of the turbulent boundary layer theory. 

28. 	 The main directions in the study of turbulent boundary layers in the 
presence of mass 'transfer between the gas and a surface. -

This field of study has been developed mainly in the last ten to fifteen 
years. A lmowledge of the work in this field indicates that its development has 
followed the same path as the development of turbulent boundary layer studies 
in compressible gases in the absence of mass transfer between the gas and a 
wall (some of the results of these studies were considered in Chapter III). 
Thus, three main directions of these studies can be mentioned: 1)the semi-
empirical approach, based on generalization of Prandtl?s formula (2.68) or  
von K&rmahfsformula (2.69) in the case of flow of a compressible gas with 
mass transfer between the gas and wall (this approach can also be character
ized as the approach based on the use of the logarithmic velocity profile); the 
semiempirical approach based on the use of a power-law velocity profile; 3) 
the empirical approach, based on the direct use of experimental data. 

The first approach is the most highly developed at present. In most of 
the work on this approach the following expression is used for the shear stress 
in the boundary layer: 

226 

-h31 

/282-



Here ( p  v ) ~is the mass flux of the material at the solid surface. 

Equation (5.1) can be obtained easily from the following simple argument.
The quantity ( T  - pwvwu) can be expanded in a Taylor series, giving 

Then, by noting that it follows that 

from the equation of motion (2.52) for  a flat plate and the second of the boundary 
conditions (2.73): 

which leads to equation (5.1). Equation (5.1) which is assumed for the shear 
stress essentially means that it is assumed that the mass flux of the material in 
the boundary layer is constant: 

It is not difficult to see that equation (5.1) leads to incorrect results at the outer 
edge of the boundary layer, where it is necessary to satisfy the conditions T = 0 
when u = Ue' 

The actual distribution of the shear stress in the boundary layer in the 
presence of blowing can be seen from Fig. 25 [121], which gives the results of m33
shear stress measurements at various values of the blowing parameter B, de
fined by 

The tangential stress distribution in Fig. 75 is shown as a function of the 
dimensionless distance from the wall y/6, where 6 is the boundary layer thick
ness. It can be seen from the Figure that in the absence of blowing (B = 0) the 
maximum shear stress occurs at the wall. A s  the blowing parameter increases, 
the shear stress at the wall decreases noticeably, and there is a considerable 
increase within the boundary layer, with a maximum in the zone adjacent to the 
wall. The same results, but recalculated in the form of a relationship T - , ~=f(a), 

227 




Figure 75. 

U 4.2 44 46 48 10 $23 
a 

Figure 76. 

a re  shown in Fig. 76. It can be seen that in the region 5 0.5 the shear stress 
distribution is described well by equation (5.1) (dashed lines) in the form D84-

z = '6, (1 + BE). (5.3) 

In spite of the fact that equation (5.3) describes the shear stress distribu
tion in the outer region of the boundary layer poorly, it appears to be quite appli
cable for calculating the integral characteristics of the boundary layer (friction, 
displacement thickness, momentum loss thickness, etc.). This fact can be ex
plained by arguments similar to those given in Section 10 in connection with 
equation (3.1). 
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By using equation (5.3), the following expressions for the velocity profiles
in the turbulent core of the boundary layer can be obtained from Prandtl's equa
tion (2.68) and von Ka'rm&'s formula (2.69) : , 

(5.5) 

Here  C4, C , ,  C, a re  integration constants, and 7 and 6 are expressed by equa
tion (3.8). 

It is not difficult to see that in the absence of blowing (B = 0) equations 
(5.4) and (5.5) reduce respectively to equations (3.6) and (3.7), which describe 
the velocity profiles in the turbulent core on an impermeable wall. 

Equations (5.4) and (5.5) lead respectively to the following expressions @85-fop the momentum loss thickness: 

In the absence of blowing (B = 0) equations (5.6) and (5.7) reduce to equations 
(3.9) and (3.10) respectively *. 

The difference between the work of different authors usually occurs in 
connection with the definition of the integration constant C, and with the method 
of evaluating the integrals in equations (5.6) and (5.7) * *. 

One of the first papers in which an analysis was made of turbulent bound-
ary layers on a porous plate with injection of a material with the same physical 
properties as in the approaching stream was that of Dorrance and Dore F123, 
1241. In this work the velocity profiles were determined on the basis of Prandtl's 
formula (see (5.4)), assuming that the shear stress distribution in the boundary
layer was described by equation (5.3). The friction coefficient was found by the 

f i ~ 

- ~- - - --c__ .___ 

*It should be noted that equations (5.6), ( 5 . 3 ,  like (3.9), (3. lo), are 
approximate, since they are  obtained if  the laminar sublayer is neglected, as
suming that the turbulent core extends to the wall, which is valid when the lami
nar sublayer is relatively thin. 

%A detailed analysis of these differences is to be found in the work of 
Spalding et al. [122]. 
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usual method making use of the integral momentum relationship (2.80), which 
in the present case of flow along a flat plate becomes 

The method of Dorrance and Dore was extended by V. P. Motulevich E1251 to the 
case when the material injected into the boundary layer had different properties 
to those of the approaching stream. Later, Motulevich developed this method 
further to deal with sublimation of the plate surface, and improved it from the 
computational point of view [126, 1271. 

L. E. Kalikhman [128] studied the turbulent boundary layer in an incom
pressible fluid with mass injection of a material having the same physical prop
erties as the gas wetting the surface. In this paper the solution was obtained on 
the basis of the semiempirical theory of Prandtl (2.68), using a boundary condi
tion at the wall similar to the boundary condition in the boundary layer of a free 
jet, which is equivalent to assuming that there is no laminar sublayer close to 
the wall. 

The question of what effect: the Lewis and Prandtl numbers have on fric
tion on a flat  plate in the presence of blowing through a porous wall a material 
which is inert with respect to the gas in the main stream was studied in the 
paper by Ginzburg, Kocheryzhenkov and Mordvinova [1291. 

Investigations of this problem on the basis of the limiting laws of friction 
and heat transfer have been made by Kutateladze and Leont'yev et  al. [130, 1311. 

A semiempirical method of calculating turbulent boundary layers on a 
chemically active decomposing surface with applications to the calculation of the 
combustion of graphite surfaces was developed by Denison [1321, 

The second approach based on the use of the power-law type of expression 
for the velocity profile has had much less development up to the present. Of the 
papers using this approach, mention can be made of the work of V. D. Sover
shennyi which considered flow on a permeable surface in the presence of a small 
longitudinal pressure gradient as well as flow along a porous plate. 

The empirical method of calculating friction and heat transfer on a porous 
plate during the blowing of air into air was used by V. P. Mugalev [134]. This 
method is based on an analogy established experimentally by the author between 
friction with a positive longitudinal pressure gradient and friction on a porous 
plate in the presence of blowing. The analogy depends on the similarity of the 
velocity profiles in the boundary layer in these flows. By introducing the form 
parameter fw = (pwvu/peUe) (Re9O- 25, Mugalev reduced the integral momentum 
relationship to a form which made possible its linearization, similarly to the 
approach used in the well known method of L. G. Loytsyanskiy [1351. Subsequent
calculations were carried out in the same way as calculations of boundary layers 
with longitudinal pressure drops. 

/z& 
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An empirical method of calculating heat and mass transfer on a flat plate 
with and without chemical reactions in the boundary layer was developed by 
Spalding et al. [122]. To a certain extent this method is analogous to the method 
of Spalding and Chi for calculating friction on an impermeable plate which was 
considered in Section 14. A s  in the latter work, some of the functions were ob
tained on the basis of an analysis of semiempirical methods of calculation, and 
others on the basis of experimental data. 

In order to calculate drag, heat transfer and the flow rate of the cooling
material, tables and graphs were set up for a range of Mach numbers from 0 to 
12  and temperature factors from (Tflm) = 0.05 to  20. The injection of air, 
helium and hydrogen into a i r  is considered. Two groups of tables are given for 
hydrogen, one taking combustion into account, and the other for the absence of 
combustion. 

It should also be noted that the paper by Spalding, Auslander and Sundarom 
also contains a detailed analysis of many of the semiempirical methods and an 
extensive bibliography. 

. ~ -~ - .  boundary layers in the presence of mass29. Experimental studies of turbulent . ~- .. .- - .  . .  

transfer 

Up to the present quite an extensive amount of experimental material has 
been accumulated on the effects of injecting various gases on the turbulent 
boundary layer characteristics (velocity and temperature profiles, friction, 
heat transfer, etc.). Most of the experimental data have been obtained for flows 
without longitudinal pressure gradients (plates, cones) *. Unfortunately, the con
siderable technical difficulties connected with carrying out these types of ex
periments have led to considerable errors  (up to 100% ) in some cases, as 
indicated by the very large scatter of the experimental points obtained by differ
ent authors under similar conditions. For a long time the main experimental
method of determining local friction was the method based on measuring the 
velocity and temperature profiles. More exact direct methods of measuring
local drag forces by means of tffloatingftelements, which have been widely used 
in studying flows on impermeable surfaces (see Section ll), are  still relatively 
undeveloped. In a number of papers the various characteristics were not mea
sured with sufficient accuracy. These circumstances have led to the situation 
that the effects of various parameters on friction and heat transfer still remain 
unclear, and in some cases the experimental data of different authors are con
tradictory. 

In the present Section, we will consider the main results of the ex
perimental investigations of boundary layer characteristics in the presence of 
blowing into supersonic streams. A s  usual, the measured results in subsonic 
streams will be introduced also in the combined graphs. 

*It must be said that as a result of the effect of the thickened boundary 
layer on the external stream it is not by any means always possible to ensure 
gradientless flow in experiments with injection at large supersonic velocities. 
It may be noted in passing that the theory of interactions between turbulent 
boundary layers and hypersonic external streams has only just begun to be 
developed. See for instance [1361. 
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The experiments of V. P. Mugalev [137-1391 *. In his work, V. P. 
Mugalev obtained extensive information on the structure of flow in turbulent 
boundary layers in the presence of blowing, and on the effects of various param
eters (the Reynolds and Mach numbers, Rex, Me, the properties of the injected 
gas, etc.) on heat transfer. In the experiments, measurements were made of 
the velocity, temperature, concentration and density profiles in the boundary 
layer and of heat transfer on a flat porous plate over a wide range of stream 
parameters and blowing intensities. 

Figure 77. 

Figure 77 shows the velocity profiles during the blowing of air  into an a i r  
stream moving at subsonic velocities (Ue = 5 1  m/sec). It can be seen that as  
the blowing is increased, the velocity profiles are deformed, becoming less 
blunt. A t  large blowing intensities (vw’Ue > 0.02) there is a point of inflection 
on the profiles, and the derivative ( au/ay) tends to zero. From an analysis

W 
of the velocity profile changes, Mugalev concluded that at moderate blowing 
intensities (up to the appearance of the points of inflection on the profiles) the 
effect of blowing was similar to the effect of a longitudinal pressure gradient, 
while at larger blowing rates the velocity profiles became similar to jet profiles. 

Figure 78 shows the velocity and temperature profiles obtained under the 
same conditions (Me = 0.08) with the blowing of air. Along the ordinate axes of 

_ _  
 - - _ _ _ ~ _  _____- ~- _ _  

*Most of the experimental material contained in the papers of Mugalev 
mentioned here, and the conclusions reached from this material, in particular, 
the conclusion that there is no appreciable effect of the Mach number on the 
relative heat flux to the wall during blowing, were obtained during the years 
1955-1956. 
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Figure 78. 

Y 
these figures are plotted the quantities Y/Ye and Y/YeT, where Y = \ (dpe(T)dy 
so that Ye and YeT are the coordinates of the edges of the dynamic aid thermal 
boundary layers. The blowing parameter l3N is expressed by the relationship 

Comparison of the profiles of velocity and stagnation temperature difference 
indicates that these profiles a re  approximately similar. A t  the same time, at 
large values of the blowing parameter, the transfer of heat occurs rather more 
intensively than the transfer of momentum. 

Figure 79 gives an analogous comparison of the profiles of velocity and rela
tive concentration in the boundary layer during the blowing of carbon dioxide into /2!2
an air  stream; these were also obtained under similar conditions (Me = 2 .5 ,  

Tw/Tro = 1.1). It can be seen from the figure that the velocity and concentration 
profiles are also approximately similar. 

Figure 79. 
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Thus, in the case being considered it is possible to conclude that the 
injection of gas into the boundary layer has similar effects on the velocity, 
temperature and concentration profiles. A t  the same time, the author noted 
that strict similarity between these profiles was absent during blowing. 

Experiments to measure heat transfer were carried out in a wind tunnel 
with injection of cold gases (helium, air ,  carbon dioxide, argon and krypton) 
into the boundary layer. The Mach and Reynolds numbers varied over the ranges
0 5 Me s 3.7, lo5 < Re

X 
5 lo7,  and the temperature factor varied from 

T ~ / T , ~= 0 . 5  to 1. The heat transfer coefficients at the porous surface were 
determined on the basis of a heat balance equation from the measured values 
of the temperatures of the gas being injected and the wall, the flow rate of the 
gas being injected, and the parameters of the external flow. 

The experimental results on the effects of blowing on heat transfer during 
the injection of various gases at various Mach numbers of the external stream 
are  shown in Fig. 80, in which the conditions were: 1- helium, Me = 2.5 ;  

2 - carbon dioxide, Me = 2 .5 ;  3 - argon, Me = 2 . 5 ;  4 - krypton, Me = 2.5; 

5 - air ,  Me +I 0;  6 - air ,  Me = 2 . 5 ;  7 - air ,  Me = 3 .7 .  In the estimation of the 
author, the maximum possible e r ro r  in the experiment did not exceed 10 - 44% 

for ( M ~ / M , ) ~ % ~= 0.5 - 5. 

Figure 80. 

On the basis of the data given in Fig. 80 it can be concluded that over the 
investigated ranges of the parameters Me, Rex and Tw/Tro, these parameters 
have no effect on the dimensionless relationships 
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Based on an analysis of the experimental data on heat transfer, Mugalev 
proposed a simple approximate formula for calculating the heat flux: /294 

Here Mi and M2 are the molecular weights of the gas at the external edge of the 
boundary layer and of the injected gas; b = 0.35 when 0 . 2  < (Mi/M2) < 1; 
b = 0.7 when 1 < (Mi /Mz) < 8; b = 1when (Mi /Mz) = 14.5. The approximate 
formula (5.9) is applicable when %/(cQB = 2 0.1. 

h 

The experiments of Pappas and Okuno [140]. The dependence of the mean 
coefficients of fkiction and heat transfer. and the recovery coefficient and the 
Reynolds analogy parameter on the blowing of air ,  helium"and Freon-12 through 
the porous wall of a cone with a vertex angle of 12" was investigated at Mach 
numbers of the air  stream (on the cone) of 0.7, 3. 67, 4.35 and a Reynolds num
ber of the order of 9.5 x lo6. 

The results of the measurements made by Pappas and Okuno are shown in 
Figs. 81 - 89. The following notation is used on these figures: cF - mean fric
tion coefficient; cH - mean heat transfer coefficient: BFo = 2 pw w/ p  e e  ( C F ) ~ ~v U 

is the blowing parameter for the supersonic stream; BFo = 2 pwvw/p,V, ( c d B 0  
is the blowing parameter for a subsonic stream; Ue, pe are the velocity and 
density at the edge of the boundary layer; Me is the Mach number at the edge of 
the boundary layer (in the case of the subsonic flows, Me = Moo); r = (Tr - Tw)/ 
(T,* - TW) is the recovery coefficient; Tr is the recovery,temperature; T* is thee 
stagnation temperature in the outer stream; Rex = Uepex/pe is the Reynolds 
number fo r  the supersonic stream; Re = U p

c o o 3
x/pm is the Reynolds number x 

for a subsonic stream; x is the distance measured along the cone. The subscript 
'IO" denotes parameters in the absence of blowing. 

Figures 81 and 82 show the quantity c ~ / ( c ~ ) ~ &on a thermally insulated 
surface as  a function of the Mach number for various values of the blowing 

parameter BFo' In addition, Fig. 82 also shows the experimental points of 
b 9 6  

Mickley and Davis [141], which were obtained as a result of measuring local 
friction coefficients from velocity profiles on a plate in an incompressible fluid. 
By considering Figs. 81 and 82 it can be concluded that the Mach number at the 
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Figure 81. 

46J.
.. 

I 

Blowing of Iair ! 

Figure 82. 

outer edge of the boundary layer has a considerable effect on the ratio 
'F/('f) B+' This effect increases as  the blowing parameter BFo increases. 

Figures 83 and 84 show the results of measurements of the heat transfer 
coefficient at various values of the injection intensities of helium, a i r  and 
Freon-12 at Me = 3.67 and 4.35. The same data for helium and air ,  supple
mented by measured values at M = 0.7, are shown in terms of differenc coore 
dinates in Figs. 85 and 86. From Figs. 85 and 86 it can be seen that over the 
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Figure 83. 

Figure 84. 

range of Mach numbers Me from 0.7 to 3.67, the effect of the Mach number on 
the ratio C ~ / ( C ~ ) ~ *is small, which agrees with the data given above from the 
work of V. P. Mugalev. Over the range of Mach numbers from 3.67 to 4.35, 
the nature of this dependence changes quite sharply, which is in contradiction 
to other existing results, such as  the results of the same authors in the range
0.7 5 Me 5 3.67. 
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Figure 85. 

Figure 86. 
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Figure 87. 

Figure 88. 

Figure 89. 

Figure 87 shows the dependence of the recovery coefficient r on the blow
ing parameter at Mach numbers from 0.7 to 4.35. As can be seen from the 
Figure, for the Mach number of 0.7, the recovery coefficient decreases with 
increase of the blowing intensity during the injection of air and Freon, while in 
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the injection of helium, it first increases to a value of 1,25 and then decreases. 
A t  Me = 4.35 the recovery coefficient initially decreases for all the gases in
jected, and then increases. Attention is drawn to the fact that the recovery 
coefficient exceeds unity. 

Figures 88 and 89 show the dependence of the Reynolds analogy parameter 
2cH F  on the blowing of a i r  and helium for various Mach numbers. The nature/c 

of the change of the Reynolds analogy parameter during the injection of helium 
at supersonic velocities should be noted. Initially, this parameter increases, /29 7-reaches a maximum equal to 1.35, and then decreases noticeably. 

From a consideration of the experimental data of Pappas and Okuno it is 
obvious that the blowing of material into the boundary layer leads to a consider
able change in the nature of the boundary layer; the change of such quantities as 
the recovery coefficient and Reynolds analogy parameter is quite different to the 
behavior of this quantity in the absence of blowing. 

The experiments of Fogaroli and Saydah [142]. The paper of Fogaroli and / 3 ( 3Saydah contains the results of an investigation in a hypersonic wind tunnel on the 
effects of air blowing on friction and heat transfer in the turbulent boundary layer 
on a porous cone at values of the Mach number on the cone of 5.3 and 8 . 1  and a 
range of blowing parameters Bho = pwvw/peUe(~h)B=o from 0 to 20. The half-
angle of the cone was 7.5". h 

4, 

Figure 90. 

Figure 90 shows the change in the ratio of the heat flux with blowing to the 
heat flux without blowing as  a function of the blowing parameter for various val
ues of the Mach number at the edge of the boundary layer. The data of other 
authors are also included (the points a re  not distinguished on the graph). The 
scatter of experimental points is cpite large, so that it is difficult to say any
thing of the effect of the Mach number on the heat flux, On the same figure is 
shown a curve calculated from the following approximate formula: 
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(5.10) 


The experimental data of other authors. Figure 91, taken from the paper -PO1 
by Na&* gives a composite graph of the data of various authors on drag mea
surements in the presence of blowing (v* is the dynamic velocity). On the same 
figure is shown the curve calculated from the formula 

(5.11) 

7 

Figure 91. 

Equation (5.11) was obtained by Nash as a result of generalizing Turcotte’s 
formula [144], which was obtained for incompressible fluids. 

From a consideration of the results given above from experimental inves- ,302-
tigations on the blowing of various materials into turbulent boundary layers the 
following conclusions can be reached: 

The injection of material into the boundary layer decreases friction and 
heat transfer on the surface, The greatest effect occurs with the blowing of light 
gases. 
-

*Figure 9 1  and equation (5.11) are taken from the review paper [1431. 
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The boundary layer velocity profiles are deformed during blowing, be
coming less blunt as the blowing intensity is increased. Very powerful blowing 
points of inflection appear on the velocity profiles, which then resemble jet 
profiles. 

The injection of various gases into the boundary layer can have a very
large effect on the recovery coefficient and Reynolds analogy parameter, 

The Mach number at the outer edge of the boundary layer has an appre
ciable effect on drag cF/( qBz0This effect is larger the more intensive. 
the blowing. 

Most of the experimental data indicate that there is no effect o r  only a 
feeble effect of the Mach number on heat transfer C ~ / ( C ~ ) % = ~ ,c /(c 1Bh=o. 

In conclusion, it should be noted that all the data considered above were 
obtained in experiments with nonreacting gas mixtures. 

Up to the present, the number of investigations of turbulent boundary 
layers with injection of chemically reacting gases is very limited [121, 1451. 

30. 	 The boundary conditions at the wall and at the outer edge of the boundary 
- - and the ---layer in the presence of mass transfer between a surface- - - gas

The heat flux at the wall 

The formal boundary conditions for the longitudinal velocity component, 
concentration and total enthalpy in the presence of mass transfer between the 
surface and gas can be written in the form /303 

11 = 0 ,  ct = II  = 1 ~ ~ "  at y = 0; 
IL = U,, ci = tie, I I  = N, at y -+ 00. (5.12) 

The boundary condition for the normal velocity component on a permeable wall 
is 

v = v,,, at y = 0 (5.13) 

in contrast to the condition v = 0 at y = 0 on an impermeable wall. The surface 
of the plate is usually regarded as semipermeable, i. e., permeable to the 
material being injected and impermeable to the gases wetting the surface, 

The expressions for the enthalpy on the wall and at the outer edge of the 
boundary layer have the forms 

(5.14) 
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u=
H e  = he + , I t ,  = 2 ciehIe, hie= 's" cPirlT+ It:. (5.15) 
i 0 

The concentrations of the components at the outer edge of the boundary 
layer cie are  usually assumed to be known from the solution of the outer stream, 
In most cases it is assumed that the outer stream is in a state of thermochemi
cal equilibrium, i. e. , cie = c e )  , Thus, the boundary conditions at the outer 
edge of the boundary layer are usually completely defined. A s  regards the con
ditions at the wall for the concentration ciw and the velocity vw, it will be seen 
subsequently that these conditions are interdependent. The value of vw can in 
principle be given if blowing through a porous wall is being considered. In this 
case, the concentration at the wall ciw can be determined from additional con
ditions during the solution of the problem. 

In the case of flow along a subliming wall the normal velocity component 
vW cannot be given a priori, but must, like the concentration on the surface, 
c.1w' be determined from additional conditions during the solution of the prob
lem (in the case of equilibrium sublimation one of these additional conditions 	 -Bo4 
is expressed by the Clausius-Clapeyron equation, which relates the concen
tration of the sublimate to the temperature and pressure on the wall). 

In order to establish the additional re-
Qu)zuciw, &i $)z 	

lationships relating the flux of material injected 
into the boundary layer through a porous wall 
(or formed as a result of sublimation) to the 
concentration of the components at the wall,L-w

Solld the conditions for the conservation of the ith 
component at the gas-solid interface are set 

(PVlw(ciw)-
t up (Fig. 92). From the figure it can be seen 

. .  that the ith component is transferred from the 
gas to the wall by means of diffusion. The 

Figure 92. mass flux of the ith component transferred in 
this way is obviously equal to ( p s i $ )  (%*  

,I' 

is the effective diffusion coefficient (1.58); only mass diffusion is taken into 
account here). A t  the same time the ith component is transferred from the 
surface into the boundary layer of the stream by the mass flux (pv), injected 
through the wall. The quantity of the ith component transferred in this way is 
obviously equal to (pv)w ciw' A t  the same time, if the ith component occurs in 
the mixture injected into the boundary layer through the porous wall (or during 
sublimation) and the concentration of this component within the wall is equal to
(ci.J-, the quantity of the ith component supplied to the boundary layer by blow

ing will be (pv),(ci.J-. If a chemical reaction occurs at the wall as a result of 
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which a quantity giw of the ithcomponent is formed (or consumed) (giw is the 
mass rate of formation of the ith component per unit area), the equation for the 
conservation of the ith component can clearly be written in the following form, 
bearing in mind the transfer processes mentioned above: 

(5.16) 

By substituting into the left-hand part of equation (5.16) the expression for g. b o 5
1W 

(equation (4.35)), it is found that 

For components not occurring in the mixture being injected into the bound
ary layer, the quantity (ciJ - has to be taken to be zero. If a single component 

is injected, (ciJ - = 1. It is obvious that within the wall  the condition 

(ciJ - = 1is always satisfied for an injected mixture. 

In the absence of chemical reactions (giw = 0), the condition (5.16) becomes 

When a single component is supplied through the wall ( (ciw>- = l) ,  equation 
(5.18) can be written in the form 

Figure 93. 
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Let us now proceed to a consideration of the heat balance at the gas-solid 
interface (Fig. 93). Heat is supplied to the solid surface by means of heat con
duction and mass diffusion: 

Heat is transferred from the wall into the boundary layer by means of the stream 
of material injected into the boundary layer: (pwvw )cciwhiw; however, the 

1
heat flux directed to the interface on the solid side reduces to p v c(ciwhiJ - -BO6 

W W 1
(the temperature gradient in the solid is assumed to be zero). Hence, the heat 
flux causing heating of the wall (within the wall) is 

Making use of the expression for the heat flux from the gas to the wall, 
equation. (4.149,equation (5.20) can be transformed to 

(5.21) 

For a subliming component it is possible to write the equation 

where hiL is the heat of sublimation of the ithcomponent. By substituting (5.22) 

into (5.20), it is found that 

(5.23) 

where 

I ~ L=: 2(ciw)- h i I ;  (5.24) 
i 

is the overall heat of sublimation. 
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By expressing the diffusion flux of the ithcomponent pw%iw ( a ~ ~ / a y ) ~  
by means of equation (5.18), the following expression for the heat flux, which 
is very important in practical applications, can be obtained: 

(5.25) 

In conclusion, it is to be noted that the analysis carried out here for a 
subliming surface can be easily generalized to the case of evaporation at a 
gas-liquid interface. It is only necessary to replace the heat of sublimation 
hL by the heat of vaporization hv. 

The conditions (5.16 - (5.19) obtained in this section represent the condi
tions linking the mass flux injected into the boundary layer (or formed as  a 
result of sublimation) with the concentrations of the components at the wall. 
Thus, all the boundary conditions at the wall are  now completely defined. 

31. 	 Velocity profiles and drag on a flat plate during injection of material into 
the boundarv laver 

In the general case, the expression for the velocity profile in the turbulent 
core based on von K6rmdn's formula (2.69) and the shear s t ress  distribution in 
the boundary layer (5.3) has the form of equation (5.5). In order to determine 
the integration constant C, in equation (5.5) the same assumptions are made as 
were used in Section 12 : it is assumed that the derivative d q/dq at the edge of 
the laminar sublayer on the side of the turbulent core has the same value as in 
an incompressible fluid in the absence of blowing; i. e. , (dq /dq) = 1p= 1cu. 

? L + O  
In other words, it is assumed that (dq/dq) is independent of compressibility,

%+O 
heat transfer and the injection of material. The turbulence constants x and a 
are  assumed to have the same values as in incompressible fluids ( x = 0.4,  
a! = 12). From a consideration of the slopes of the velocity profiles during blow
ing (Figs. 77 and 78), it is obvious that the assumption made concerning the 
value of the derivative at the interface between the laminar sublayer and turbu
lent core will not lead to appreciable errors  in the calculations. 

Using the assumptions outlined above, the following expression can be 
obtained for the velocity profile in the turbulent core: 

(5.26) 

The slope of the velocity profile in the turbulent core is obviously given by 
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(5.27) 

Here uL is the dimensionless velocity at the edge of the laminar sublayer (the 
problem of determining uL will be considered below). 

In the case of the flow along a plate of a stream with constant density and 
blowing into the boundary layer of a material of the same composition as the 
approaching stream ( p  = const = p e), the expression for the velocity profile 
(5.26) assumes the following form after the integrals are  evaluated: 

(5.28) 

Her e  

(5.29) 

In order to determine the velocity profile in the laminar sublayer, equa
tion (3.106) is used after first simplifying it by making the assumption of a 
constant viscosity in the sublayer (1= const = 1

W 
). By substituting eryation 

(5.3) into equation (3. 106) and carrying out the integration, the following expres
sion is obtained for the velocity profile in the laminar sublayer: 

A t  small blowing intensities, the exponential can be expanded in series and all posthe terms except the first two can be discarded, giving 

(5 .31)  

In the absence of blowing, equations (5.30) and (5.31) reduce to the expression
obtained earlier (equation (3.30)) for the linear velocity profile. 

Velocity profiles in the laminar sublayer calculated from equation (5.30) 
are  shown in Fig. 94. The velocity profile for an incompressible fluid in the 
absence of blowing is also shown. At first sight, the way in which the velocity
profile in the laminar sublayer changes in Fig. 94 appears paradoxial, since 
here the velocity profile becomes fuller as  the blowing parameter increases, 
which contradicts the experimental data given earlier (Figs. 77 and 78). How
ever,this paradoxical nature is only apparent, since Figs. 77 and 78 deal with 
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Figure 94. 

the actual velocity ume, while Fig. 94 gives the velocity profile in terms of 

the universal coordinate q = u b  * . 
The problem of the thickness of the laminar sublayer and the velocity at P 10-its outer edge adjoining the turbulent core remains very unclear at present in 

the presence of blowing, The small number of experimental data available makes 
it possible to conclude that there is a decrease in the relative thickness of the 
laminar sublayer as  the intensity of blowing increases. Unfortunately there a re  
no quantitative data based on reliable experimental results. 

The expression (5.30) for the velocity profile in the laminar sublayer, 
which is based on the shear stress distribution law (5.3), is in good agreement 
with the existing experimental data in the laminar sublayer (Fig, 76), and can 
obviously be regarded as quite reliable. Thus, if the thickness of the laminar 
sublayer q L  can be determined by any means, cpL can then be determined from 
equation (5.30), so that 

For determining the thickness of the laminar sublayer, Van Driest [146] 
has used a condition analogous to the condition (3.102), except that the shear 
stress at the edge of the sublayer is taken to be the determining factor rather 
than the shear stress at the wall, as in equation (3.102). By analogy with equa
tion (3.102) this condition can be written as 

(5.32) 
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The combined use of equations (5.32), (5.3) and (5.30) lead to the following ex
pression for the thickness of the laminar sublayer 

(5.33) 

In the absence of flowing (B, = 0 ) ,  equation (5.33) reduces to the condi
tion rlL = a which was used earlier (Cbapters III, IV). 

The results of calculating qL and 'pL from equations (5.33) and (5.30) are P 11-
shown in Fig. 95. 

In addition to the velocity profiles in the laminar sublayer obtained from 
equation (5.30), Fig. 94 also shows the velocity profiles in the turbulent core 
obtained from equation (5.28) for three values of the blowing parameter, B,= 0, 
0 . 2  and 1. The boundary of the laminar sublayer was determined from equation 
(5.33) in each case. 

Let us now consider the calculation of drag on a flat plate in the presence 
of blowing. It is not difficult to see that with the assumptions made in the present 
chapter (C, = lp), the expression for the momentum loss thickness (5.7) becomes 

(5.34) 

Here, as previously in Section 12 of Chapter 111, it is assumed in the calculation 
of 6 ** that the derivative $ is given over the entire boundary layer by equa
tion (5.27), which was obtained for the turbulent core. In this case, the zone of 
the laminar sublayer is as it were omitted, and inner edge of the turbulent 
core is correspondingly extended to the wall (GL - 0). As shown in Chapter IlI, 
such an assumption is applicable for flows close to an impermeable wall, and it 
will be all the more applicable in the presence of blowing, since blowing de
creases the relative thickness of the laminar sublayer. 

24 

76 Figure 95. 

8 

G 


249 




In order to evaluate the integral in the right-hand part of equation (5.34), 
the asymptotic expansion (3.39) can be used. A s  a result of this evaluation, it 
is found to a first approximation /312-

(5.35) 

Further, by substituting equation (5.35) into the integral momentum relation
ship (5.8) and following the procedure indicated in Section 12, the following 
system of equations is obtained, which make it possible to determine the local 
friction coefficient on a flat plate: 

(5.36) 

Here cfo is the friction coefficient on a plate in an incompressible fluid in the 
absence of blowing, given either by von Ka/rma/n's formula (3.59) or by equation 
(3.80). The relationships given in Chapter I can be used for calculating the vis
cosity of the gas mixture at the wall. The same methods can be used to help in 
calculating the viscosity of the gas mixture. The calculation of the function N 
can be accomplished without difficulty from the last of equations (5.36) by using 
tables of logarithms to base ten, since the right-hand part of (5.36) is known. 
In order to determine the function K (see the second of equations (5.36)), it is 
necessary to determine the dependence of the gas (gas mixture) density in the 
boundary layer on the velocity. The form of this dependence is determined from 
the flow conditions in the boundary layer (the presence o r  absence of chemical 
reactions), and by the assumptions used in establishing the relationship between 
the velocity, concentration and temperature (for instance, the assumptions as  to 
the magnitudes of the Prandtl and Schmidt numbers). 

If the Reynolds number in the first of equations (5.36) tends to infinity
(mx
-a),the following limiting formula is obtained for the ratio cf/c f o  using 

a similar approach to that used in considering flow along an impermeable plate p i 3-in Section 12: 

(5.37) 

Equation (5.37) makes it possible to determine the limiting value of the 
flow coefficient c m = pw w/p U at which friction at the wall becomes equal tov e e  
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zero. Remembering that by definition B = 2cm/cf, equation (5.37) can be re
written with the use of the second of equations (5.36) as  

(5.38) 

If cf/cfo = 0 is substituted in the right-hand part of equation (5.38), an expres
sion is obtained for the limiting value of the flow coefficient: 

(5.39) 

When a gas of the same density as the gas in the approaching stream is 
injected into the boundary layer ( p  = const = pe), equation (5.39) yields a 
limiting value ( c ~ ) ~ ~= 2c

f 0' 

Let us now consider further some special cases of flow close to a flat 
plate in the presence of mass injection into the boundary layer. 

~~32. 	 The boundary layer on a flat plate in the presence of blowing at Prandtl 
aKd S%imiXnumEersequal to unity [imj- ~ ~ - ~ ~ ~ ~ l _ l  . ... . .- - .____ 

The flow of a gas of homogeneous composition along a flat plate will be 
considered. The gas injected through the porous wall into the boundary layer 
wil l  also be regarded as homogeneous, but with different physico-chemical
properties to the gas of the main flow. In addition, it will be assumed that the -
injected material is inert with respect to the gas of the main flow, i. e. , there 

/s 14 

are no chemical reactions, and the mixture in the boundary layer can be re
garded as a binary mixture. It will also be assumed that the specific heat capac
ities of both the components a re  constant, i. e. ,  are independent of temperature, 
and the Schmidt and Prandtl numbers are taken equal to unity. 

With these assumptions the boundary layer equations (4.85) - (4.87) 
assume the form: 

(5.40) 

The boundary conditions for the system of equations (5.40) can be written as  
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u = 0 ,  v = H = E l , ,  C,=C,~ at y = 0; 

u = u,, EI = ire, c, = 0 at y + w .  I (5.41) 


Here and below the subscript 2 indicates parameters referring to the injected 
material, and the subscript 1 those of the main approaching stream, 

Since the mixture in the boundary layer is binary, there is no need for a 
conservation equation for the first component (ci = 1- cz). The condition for the 
concentration c2at the outer edge of the boundary layer indicates that there is 
none of the injected material in the external stream, 

For a mixture of two gases, the equation of state (1.86) assumes the form 

R
P=P+-, (5.42) 

where 

MiMrAil == MICI+Ms (1-C:) (5.43) 

is the molecular weight of the binary mixture. 

From the system of equations (5.40) and the boundary conditions (5.41) it /3 15-follows that the velocity, total enthalpy, and concentration fields are  similar: 

The following obvious relationships are obtained from (5.44): 

H = H, ,  + ( H e  -H,,-)E, 

c, = c,,, (1 - E) 

From the definition of the total enthalpy it follows that 
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(5.44) 


(5.45) 


(5.46) 


(5.47) 


(5.48) 


(5.49) 




-- 

the following equation giving the relationship between the temperature and 
velocity is obtained from (5.45) by using (5.47) - (5.49): 

T 
-= [ I  -~ i i  pa2- e ( I  - ii)] [I -e ( i  - q1-1. (5.50)
Flu 

Here 

(5.51) 

In the absence of material injection into the boundary layer (c2w = 0) or 
during the injection of a gas with the same specific heat capacity as that of the 
gas in the main stream (cp2 = cpl), equation (5.50) reduces to Crocco's 
integral (3.47). 

, Further, by using the equation of state (5.42) and equations (5.43) and /3 16-(5.50) an expression is obtained for the density in the boundary layer 

(5.52) 

where 

(5.53) 


It follows from (5.52) that besides the Mach number Me at the outer edge of the 
boundary layer and the temperature factor T

W
ne,there is third important 

parameter which governs the density distribution in the boundary layer; this is 
the concentration of the injected material at the wall cZw. 

In order to find a solution in closed form, it is necessary to establish a 
relationship between the blowing parameter B, given by equation (5.2), and the 
concentration c2w. This relationship can be obtained from (5.19) , which ex
presses the condition for conservation of the injected material at the wall. Bear
ing in mind the assumption that the Schmidt number is equal to unity (Sc = 
pw/pW3ijw) , equation (5.19) can be reduced to the form 

(5.54) 
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By making use of (5,46), the required relationship between the blowing 
parameter B and the concentration of the injected material at the wall can be 
found from equation (5.54) : 

cqw = 	-B (5.55)
I + B '  

n="* 21u (5.56)
1-c21u 

It follows from equation (5.55) that the concentration of the injected material at 
the wall is always less than unity for any finite value of the parameter B, and 
assumes the following limiting values: cZw- 0 when B- 0 ;  c2w - 1when 

B - 0 .  

By using equation (5.55), c2w in equation (5.52) can be replaced by B, and /3 17-
making some simple rearrangements, it is found that 

{I+ B[ l - ( I - * ) ( l - l i ) ]y  x (5.57) 

When the gas is moving with a small velocity ( P  = 0) and there is no heat 
transfer between the gas and wall (w = 0) equation (5.57) becomes: 

(5.58) 

The function K which governs drag and which in the general case is given 
by the second of equations (5.36) reduces to the following form when w = p = 0: 

when M I>M a  
and 

when MI <M a .  
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If the injected gas has the same molecular weight as  the gas in the main 
stream (Mi = MJ, and w = p = 0, the equation for K becomes 

A’ = $(61+B -1). (5.61) 

In the general case, the density is given by equation (5 .59 ,  and the integral in /318-the expression for K (5.36) must be determined numerically or graphically. 

In carrying out calculations of the friction coefficient the blowing param
eter B must be specified. Once the friction coefficient cf is determined, by 
using the system (5.36), it is possible to find the relative flow rate of the in
jected gas from the relationship 

(5.62) 

Thus, calculations for various values of the blowing parameter B make it pos
sible to establish a relationship between the drag and the flow rate of the mate
rial  injected, i. e. , to determine the relationship cf = cf( pWvw/peUe) for the 
given flow conditions. 

Figure 96. 

Figure 96 shows graphs of the friction coefficients as functions of the 
blowing parameter during the injection of various gases (Freon-12, air, helium 
and hydrogen) into an air boundary layer. The calculations were carried out for 

fI’the conditions Me = 0, TW e  = 1, Rex = lo7. 

Figure 97 indicates the effect of the ratio of molecular weights on the 
blowing parameter at a fixed value of the friction coefficient. It can be seen from 
the figure that on changing from injection of a heavy gas to injection of a light gas p 1 9  
causes a considerable decrease in the value of the blowing 2arameter. 
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:Figure 98 shows the dependence of drag on the relative flow rate of the 
injected gas for the conditions Me = 3, Rex = 4. lo6, T f l e  = 1.1. The upper 
curve was obtained for injection of a i r  into air, and the lower for injection of 
helium into air. 

Figure 97. Figure 98. 

This method of calculating drag on a porous plate can be generalized rela
tively easily to the case of sublimation of material from a surface along which 
a high-temperature gas flows [148]. It is known that if the temperature of the 
surface is lower than the triple-point temperature on the phase diagram, then 
during the flow of a gas mixture along the solid with a partial vapor pressure of 
the component of the solid in the approaching stream smaller than the saturated 
vapor pressure at the temperature of the surface, the solid will evaporate 
(sublime) without forming a liquid phase. The transfer mechanisms of various 
quantities (momentum, heat and material) in the boundary layer during the injec
tion of material through a porous wall and during sublimation a re  similar. The 
only difference lies in the boundary conditions. While the concentration of the 
injected material can be varied at will during porous injection, during sublima
tion the concentration of the material being formed at the wall depends on the 
heat of sublimation and the surface temperature. 

The concentration of subliming material at the wall c2w is expressed in 

terms of the partial vapor pressure p2 by the equation 

(5.63) 

where M
W 

is the molecular weight of the mixture at the wall (see equation (5.43)). 

During equilibrium sublimation, the partial pressure of the sublimate at 
the wall pz is equal to the partial pressure of the saturated vapor p: at the tem
perature T

W' 
which is expressed by the Clausius-Clapeyron equation [149]: 
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(5.64) 

where b is an experimental constant, hL is the latent heat of sublimation. By 
replacing the molecular weight Mw in equation (5.63) by its value from equation 
(5.43) and making use of equation (5.64), an expression is obtained for the con
centration of the sublimate at the wall in terms of the wall temperature and the 
boiling temperature TK(Pe): 

(5.65) 

When the wall temperature is .equal to the boiling temperature (Tw = TK), the 
concentration of the subliming material at the wall becomes equal to unity, which 
corresponds to the boiling regime, when the supply and concentration of vapor 
are not interrelated by the boundary diffusion condition. 

Once the concentration of the sublimate at the wall (c2J is known, it is 
a simple matter to determine the value of the blowing parameter B, which is 
related to cZwby equation (5. 56) .  If this equation is used, the following expres
sion is obtained for the blowing parameter during sublimation of material at the -P 2 1  
surface: 

(5.66) 

Thus, the method of calculating drag on a porous plate is completely applicable 
for calculating equilibrium sublimation situations, except that the blowing param
eter B cannot be specified arbitrarily, but must satisfy equation (5 .66 ) .  

33. Heat and mass transfer in the boundary layer on.. a flat - - .... __ .- .- . .. .- plate in the. presence __ ....__.-- ___I

of browing at Prandtl .and _ _  .-.--. . other. than unity- _  .-Schmidt nTm6erG. . ~ .-..-~ 

Flow in a turbulent boundary layer on a flat plate in the presence of blowing 
at Prandtl and Schmidt numbers other than unity will be considered in this Section, 
in contrast to the previous Section where Pr = Sc = 1. The need for this study 
arises from the fact that during injection of gases with different physical prop
erties to those of the gases in the main stream into the boundary layer, and in 
particular, during the injection of light gases, such as  hydrogen and helium, the' 
Prandtl and Schmidt numbers can differ appreciably from unity. For example, 
the Schmidt number of a gas mixture of hydrogen and air evaluated for the condi
tions T = 273°K and p = 1atm can vary from 0 .2  to 1.7, depending on the concen
trations of the components. The Schmidt number for a mixture of helium and air 
can also take values from 0 .2  to 1.7, while the Prandtl number for the same 
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mixture varies from 0.5 to 1.1depending on the concentrations of the compo
nents (see Fig. 99, in which the mass concentration of helium is plotted along 
the abscissa). 

. -- .. .. . ..A s  noted briefly in previous sections, the &7 . -_ 
divergence of the Prandtl and Schmidt numbers 
from unity in the laminar sublayer usually has 
no very appreciable effect in calculating drag, /322 tz  .- -but may be very important in heat and mass 

transfer between the gas and wall, .78 - . . _ _  . -


In order to simplify the analysis, it will Q4 - .  -. - -

be assumed that the Prandtl and Schmidt num
bers are  constant across the cross section of 
the laminar sublayer and a re  equal to their 
values at the wall, Apart from this, the analy
sis will be similar to that given in the previous 
section (chemical reactions a re  assumed ab
sent, the specific heat capacities of the com
ponents are  constant, and the mixture is binary). 

Figure 99. 

In order to establish an approximate relationship between the velocity, 
total enthalpy and concentration profiles, use is made of the turbulent boundary 
layer equations (4.97) - (4.100) in terms of Crocco variables, which a re  simpli
fied by the assumption of local similarity -- ag = 0 . In this case thea H  - aci 

equations expressing the conservation of the injected component and the consema
tion of energy in the laminar sublayer, (4.98) and (4.97)become 

(5.67) 

(5.68) 

Here  

+(pr -1) u t (Le -1)(cp2- cPl)T dcz . (5.69) 

The quantity q is termed the generalized heat flux. 

In the turbulent core the same equations are  written in the form 

d?H-= 
du2 O? (5.70) 

d'cz-= 0. (5.71)duz 
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(5.3) 

The boundary conditions for equations (5.67) - (5. 70) are 

at u = 0 fI = I�,, C, = c ,~ ;  (5.72)
at u = U, I� = H,,  cZ =O. 

The problem of detgrmining heat transfer in this case reduces, as  usual, to -determining the drag coefficient and establishing the relationship between drag 
/s23 

and heat transfer. 

Relationship of the profiles of-concentration and total enthalpy to the 
velocitV6rZile the fam3har-s15�afer.- - If eauation . - ,is used for theI


%hear &ess distribution in the boundary layer,- equation (5.67) can be reduced 
to 

Here the primes denote differentiation with respectu = ume. 

(5.73) 

to the dimensionless velocity 

By integrating equation (5.73) once and determining the integration con
stant from condition (5.19),  which in the present case (Sc # 1) assumes the 
form 

($)m = (5.74)-B SC (1- cqW), 

it is found that 

ci = -BSC (1 - cqlU) (1 f , ! 3 ~ ) ~ - l .  (5.75) 


Integration of (5.75) using the second of the boundary conditions (5.72) leads to 
the following relationship obtained to  interrelate the concentration and velocity
profiles in the laminar sublayer: 

c, = 1 -(I- CZW)(1  +. llup. (5.76) 

It should be noted that equation (5.76) can still not be used, since the relation
ship between the blowing parameter B and the concentration at the wall c2w. 

We can now turn to the energy equation (5.68). By introducing the dimen
sionless quantities 

(5.77) 
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this equation can be reduced to the form: 

(5.78) 

where 

(5.79) 

In contrast to (5.69), the temperature T in equation (5.79) is expressed in terms 
of the total enthalpy and velocity according to the equation 

T ==( H  -$) c;'. (5.80) 

If equation (5.3) is used, and equation (5. 78) is integrated, determining 
the integration constant from the condition at the wall, it is found that 

(5.81) 

Here 

Qw 22,, (5.82) 
C,, :-p e l r e  (/I,- l l w )  ' c ' - p u' ' 

e e 

9~is the heat flux from the gas to the wall, defined by equation (4.147); H is r 
the equilibrium enthalpy of a thermally insulated wall, or the recovery enthalpy 
(the definitions of these quantities will  be given later). 

The expression for from equation (5.79) is substituted into relationship
(5.81); after some simple rearrangements it is found that 

-
dH-+ (Pr -1)-u: u - -!
dli he  

Equation (5.35) represents a linear, first-order equation with variable coeffi
cients which can be integrated by quadrature. However, to obtain the final result 
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in a simpler form, we can confine our attention to the approximate dete-rmina- 
tion of the total enthalpy distribution in the laminar sublayer, in which H is - /325 

sought in the form of a power series with respect to the longitudinal velocity u. 
Remembering that < < 1, only three terms need be retained. In this case, 

R = -H =u, + a,n +a,$. (6.84)
he 

By using the condition at the wall, H = hw when u = 0, it is found that-
a, = h /h = hw. By next differentiating equation (5.84) with respect to -u andw e  
assuming that -u = 0, it is found that 

(5.85) 

The coefficient ai is found from equation (5.83) when -u = 0: 

al = (s) w  = Pr qw+ BAL,. (5.86) 

Here 

(5.87) 

The expression for the coefficient a2is obtained by differentiating equa
tion (5.83) with respect to -u and then assuming = 0. It is found ultimately that 

By substituting the values of the coefficients a,, ai and a2into (5.84), a 
relationship is obtained interrelating the velocity profile and the total enthalpy /32 6 
profile in the laminar sublayer 

HR = --&,,$(Prij,+BA~,)zZ+
11, 

{Pr (A 4-Pr - 1) Bij, .f (1 - Pr) (y - 1) M: + 
B2Ji;,h[A +A (Le - 1)-1+ Sc - 1 + Pr]} T.  (5.89)E* 


Dependence of -theqrofilesof concentration and total enthalpy on the 
velocitFp7ofiles-in-.t6eturbulent core.- Iri order -toeStablish the relationship 
Eetweeh the concentration and velocity profiles, equation (5.71) is integrated 
once: 
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(5.90) 

The integration constant C is determined from the equality of the diffusion 
fluxes of the injected material on either side of the edge of the laminar sublayer: 

(5.91) 

Making use of equations (5.91) and (5.75) and integrating equation (5. go), 
a relationship is obtained between the concentration and velocity in the turbulent 
core: 

c 2 - B ( l - c 2 , ” ) ( l + B G  p-l(I-4). (5.92) 

By equating the concentrations obtained from equations (5.92) and (5.76) 
at the edge of the laminar sublayer, an equation relating the concentration at 
the wall c2w to the blowing parameter B is obtained 

c:m =- 1-(1+ n)-l(I-1- fhzd)-. (5.93) 

It should be noted that at Schmidt numbers equal to unity, equation (5.93) re
duces to equation (5.55) of the previous section. Using (5.93), equation (5.92) 
is brought to the form 

(5.94) 

The relationship between the total enthalpy and the velocity in the turbulent 
core was established similarly. By integrating equation (5. 70) once, it is found 
that 

-
d D-= const = ?. (5.95)‘I 
dtZ ‘5 

The integration constant in equation (5.95) is determined from the condition thai 
the generalized heat flux on both sides of the edge of the laminar sublayer should 
be equal. By using this condition and the relationship (5.8) it is found that 

(5.96) 

By integrating equation (5.96) and determining the integration constant 
from the condition at the outer edge of the boundary layer, the following rela
tionship between the total enthalpy and velocity in the turbulent core is obtained: 
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It is not difficult to see that in the absence of blowing (B = 0) equation (5.97) 
reduces to equation (4.150) of the previous Chapter, 

Determination of the recovery enthalpy Hr ,and the Reynolds analogy. . . .  

parameter 2ch/cf. By putting = L in equation (5.97), it is found that 

By equating the values of aLgiven by equations (5.98) and (5.89) at the edge of 
the laminar sublayer, it is found that 

C?+ ;iy 1Pr ii, -1- (1 -&)(I+B)-1 -kPr (A + Pr -1) B 

When there is no heat transfer between the gas and the wall (G= 0, 

EW = Er),  the following expression for the recovery enthalpy is easily obtained 
from equation (5.99) : 

E2 -1 

-/- ,!PA [ A  -t A (Le - +Sc + Pr -I]2) . 
(5.100) 

The approximate relationship (3.150) has been used in obtaining this result. 

By substituting equation (5. 82) into equation (5. 99) and solving the result
ing expression for the Reynolds analogy parameter, it is found that 

(5.101) 
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In this case, the approximate relationship (3.159) has been used. 

In the absence of blowing (B = 0), equations (5,100) and (5.101) reduce to 
their analogs obtained in Chapter III. 

It can also be seen from equations (5.100) and (5.101) that when the Prandtl 
and Schmidt numbers a re  equal to unity, Hr = He and Zc /c = 1regardless ofh f  
blowing. 

The temperature and density distributions in the boundary layer. Once the 
distributions of total enthalpy H and concentration a re  known from equations (5.80) 
and (5.47), the temperature distribution in the boundary layer can be found as  

(5.102) 

In the laminar sublayer the values of and c2a re  given by equations (5.89) /329and (5.76), and in the turbulent core by equations (5.97) and (5.94). 

Using the condition that the pressure is constant across the boundary layer, 
the equation of state (5.42) and equations (5.43) and (5.102), the following density 
distribution is obtained in the boundary layer: 

(5.103) 

Equation (5.36) can then be used for calculating drag from the known de
pendence of density on velocity. It should be noted that the concentration of the 
injected material at the wall c2w is determined in terms of the blowing parameter 
B according to equation (5.93). 

The calculation sequence. A s  starting data, the following must be given: 
the Mach number at the edge of the boundary layer M_, the Reynolds number 
Rex = Uex/ve, the wall temperature Tw, and the temFerature at the outer edge 
of the boundary layer Te. In addition, it is necessary to be given the molecular 
weights and specific heat capacities of the injected gas and the gas wetting the 
surface of the plate. 

For the given value of the blowing parameter B, the local friction coeffi
cient in the presence of blowing cf and the friction parameter 5 ,  related to cf 

by equation (3.8), a re  determined by the method given in Section 32, i. e. , for 
Prandtl and Schmidt numbers equal to unity. Then from the known values of B 
and 5 ,  the parameter B, is determined (see equation (5.29)). The thickness of 
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the laminar sublayer q L  and the velocity at the edge of the laminar sublayer L 
are  evaluated from equations (5.33) and (5.30). Then, knowing the Schmidt num
ber as the parameter, the dependence of c2won B (Fig. 100 a) is determined 
from equation (5.93). From the known mixture composition at the wall (cw2) and 
the conditions at the wall (Tw, p), the actual Schmidt number at the wall is de
termined (ScJ* (Fig. 100 b). From the data of Figs. 100 a and 100 b (see arrows /330 
on Figures) it is possible to find the dependence of Scw on the blowing parameter, 
which is given in Fig. 100 c. A f t e r  the relationship between B and Scw is found, 
equation (5.93) is used to determine the actual concentration of the material being 
injected at the wall, c2w, Analogously, it is possible to determine the value of 
the Prandtl numbers, but in many cases the real need for this does not occur, 
since the Prandtl number has a much more feeble dependence on composition than 
the Schmidt number and can be taken as constant, The Lewis number (Lew= Prw/scd 
can then be determined from the known values of Pr and Sc. The subsequent sequence 
of calculations is: the function A (from equation (5.87)), the recovery enthalpy Hr 
(from equation (5. loo)), the Reynolds analogy parameter (from equation (5.10 1)),
the heat flux qw (from equation (5.82)), the enthalpy and concentration in the lami
nar sublayer (from equations (5.89) and (5.76)) and in the turbulent core (from 
equations-(5.97) and (5.94)), the temperature and density in the boundary layer 
(from equations (5.102) and (5.103)), and drag (from equation (5.36)), are deter
mined. 

czw 

a) b) 

Figure 100. 

The heat flux from the gas to the wall is calculated from the relationship 

-
“I,”h,f;,,

4ul= u,. (5.104) 

*Methods for calculating diffusivities and viscosities of gas mixtures were 
considered in Chapter I, where advice and assistance an their calculation was 
given (see for instance the monograph by Bretshnayder IS]) .  
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In the present case, the fluxof heat used for heating the solid (inside the /331-solid) is obtained from equation (5.21) : 

Figure 101  shows the dependence of 
the ratio c ~ / ( c ~ ) ~ *on the flow rate of the 

injected gas (hydrogen) which was obtained 
for Pr = Sc = 1(solid curve) and for 
Pr = 0.7, Sc = ScJ (dashed curve). By 
comparing the two curves it can be seen 
that deviations of the Prandtl and Schmidt 
numbers from unity have only a small 
effect on the drag coefficient. Because of 
this, there is no need to evaluate higher 
order approximations (for cf' Hr, 2ch/c$. 
This makes it possible to say that with a 
sufficiently high degree of accuracy for 
practical purposes, the drag coefficient 
in the presence of blowing can be calcu
lated in many cases using methods based 
upon the assumptions that the Prandtl and 
Schmidt numbers are equal to unity (Sec
tion 3 2). 

(5.105) 

Hydrogen Air 

-Pr=Sc=7 

Figure 101. 

When the parameters. characterizing heat and mass transfer between the 
gas and wall (2ch/cf H1-, are being calculated, however, it is necessary to take 
into account any deviations of the Prandtl and Schmidt numbers from unity, 
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NOTATION 


Latin symbols 

A - see formula (3.173) ; 
Ai, - chemical symbols of reacting materials, Eq. (4.1);- velocityof sound;a 


sighting distance, Eq. (1.16); 

mean friction coefficient, Eq. (3.62) ; 

mean heat transfer coefficient; 

local friction coefficient, Eq. (2.85); 

local heat transfer coefficient, Eq. (2.91) ; 

mass concentration of ith component, Eq. (1.29) ; 

flow coefficient of injected material, Eq. (2.86); 

recombination parameter, Eq. (4.137); 

specific heat capacity at constant volume, Eq. (1.43); 

specific heat capacity at constant pressure ; 

specific heat capacity of ith component at constant pressure; 

specific heat capacity of ith component at constant volume; 

energy of dissociation per unit mass of molecules, Eq. (4.46); 

diffusion coefficient of multicomponent mixture, Eq. (1.58); 

diffusion coefficient of binary mixture, Eq. (1.59); 

effective diffusion coefficient, Eq. (1.58); 

thermodiffusion coefficient; 

coefficient of eddy diffusivity, Eq. (2.31); 
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Damkohler number, Eq. (4.102);

sphere diameter; 

internal energy of gas, Eq. (1.38); 

energy of gas at zero absolute temperature; 

activation energy;

dissociation energy per mole of initial material, Eq. (4.22); 

energy of activation of reaction surface; 

energy of internal degrees of freedom of particles of the ith sort; 

distribution function; -

function given by Eqs. .(3..77)and (3.92); 

function defined by Eq. (3.78); 

see Eq. (1.16); 

mass rate of formation of ith component per unit surface area; 

statistical weight ; 

total enthalpy of mixture, Eq. (1.94) ; 

form parameter; 

enthalpy of mixture, Eq. (1.100);

enthalpy of ith component; 

heat of formation of ith component under standard conditions ; 

recovery enthalpy; 

Planck's constant; 

heat of sublimation of the ith component; 

mass flux density vector of ith component, Eq. (1.10); 

Boltzmann's constant; 

thermodiffusion ratio, Eq. (1.61); 

numerical rate of formation of particles of ith sort per unit 

volume, Eq. (1.27); 

see Eq. (4.7) 

see Eq. (4.12) 


see Eq. (4.16) 1 equilibrium constants ;
see Eq. (4.15) 


rate constants for the forward and reverse surface reactions; 

rate constants for forward and reverse reactions in gas phase;

equilibrium constant for surface reaction; 

dissociation rate constant; 

recombination rate constant ; 

collision integral, Eq. (1.16); 

see Eq. (3.36);

characteristic length; 

effective Lewis number, Eq. (1.103); 

Lewis number for binary system, Eq. (1.105); 

turbulent Lewis number, Eq. (2.34) ; 

turbulent mixing length; 

molecular weight of ith component;

molecular weight of mixture; 

Mach number at outer edge of boundary layer; 

mass of particles of ith type; 

numerical density of particles of the ith sort, Eq. (1.1); 

number of particles per  unit volume, Eq. (1.7); 

number of moles of ith component per unit volume; 

orders of the forward and reverse surface reactions; 

Avogadro's number; 




I l l 1  I1 I I I 1  

N - see Eq. (3.82); 
P - pressure of mixture, given by Eq. (1.8); 

P i  - partial pressure of ith component, Eq. (1.8);-
P d  characteristic pressure of ideally dissociating gas; 
I-’ - pressure tensor, Eqs. (1.12) and (1.64); 

I’i - pressure tensor for ith component, Eq. (1.11); 
Pr - Prandtl number; 

PrT - turbulent Prandtl number, Eq. (2.33); 
QP sum of states for gas at unit pressure; 

Q - total sum of states; see also Eq. (3.181); 
Qc sum of states for gas at unit concentration; 
‘li - flux density vector for kinetic energy of ith component, Eq. (1.13); 
4 - heat flux density vector, Eqs. .(1.14) and (1.76); 

q,u  - heat flux from gas to wall, Eq. (2.88); 
Qs - heat flux within solid, Eq. (5.20); 
R - universal gas constant; 

Re* - Reynolds number formed from the displacement thichess ,  
Eq. (3.43); 

Re** - Reynolds number formed from the momentum loss thickness, 
Eq. (3.17); 

Re, - Reynolds number formed from parameters at outer edge of the 
boundary layer, Eq. (3.18); 

r - radius vector with projected lengths x, y, z; 
r1u - transverse radius of curvature of body of revolution; 

sc.,, - turbulent Schmidt number, Eq. (2.35); 
sc Schmidt number for a binary mixture, Eq. (1.105); 

sci - effective Schmidt number, Eq. (1.103); 
s - rate of deformation tensor, Eq. (1.67); 
T - gas temperature, Eq. (1.8): 
Td - characteristic dissociation temperature ; 
T r  - characteristic rotary temperature and recovery temperature ; 
T v  - characteristic vibratory temperature ; 

t - time ; 
Vi - velocity of particles of ith sort (components vix, viy, V.J ; 
-v - mass-average velocity, Eq. (1.4); 

fji - mass velocity of particles of ith sort, Eq. (1.3);-
Vi - diffusion velocity of ith component, Eqs. (1.6) and (1.53);
vi - thermal velocity of particles of fih sort, Eq. (1.5); 
v, - dynamic velocity, Eq. (3.8); 
u - longitudinal velocity component; 

w j  - mass rate of formation of ith component, Eq. (1.30); 
w - active section of catalytic surface; 
x - component of the vector g on the x axis; 
xi - molar concentration; 
x - catalytic particle. 



Greek symbols : 

a - universal turbulence constant, Eq. (3.102); 
B - see Eqs. (3.48) and (3.49);
8 - see Eq. (4.117); 
Y - C*$; 

Yw - catalytic activity of wall, Eq. (4.61); 
6* - displacement thickness, Eq. (2.77);

o** - momentum loss thickness, Eq. (2.76); 
8 - boundary layer thickness, Eq. (5.53);

sg* - energy loss thickness, .Eq. (2.89); 
E - eddy viscosity, Eq. (2.30); 
E - unit tensor, Eq. (1.66);. . 

5 - friction parameter, Eq. (3.8); 
' 1 - universal coordinate, Eq. (3.8); 

q L  - coordinate at edge of laminar subIayer; 
x - universal turbulence constant ( y. = 0.4), Eq. (2.69);
a - molecular thermal conductivity; 
1, - eddy thermal conductivity, Eq. (2.32); 

&..e/, - effective thermal conductivity, Eq. (1.82); 
a, - thermal conductivity taking mass transfer into account, 

Eq. (1.81); 
P - dynamic viscosity; 
v - kinematic viscosity; 

, I 

V k )  vh. - stoichiometric coefficients of reaction, Eq. (4.1); 
5 - Crocco variable, Eq. (2.59); 

Pi - partial density of ith component, Eq. (1.8); 
P - gas density, Eq. (1.8); 

Pd -	characteristic density of partially excited dissociating gas, 
Eq. (4.50);
characteristic density of ideally dissociating gas, Eq. (4.51); 
see Eq. (4.20);

shear stress;  

universal coordinate, Eq. (3.8); 

see Eq. (3.34);

flux density vector, Eq. (1.9); 

summatory invariant, Eq. (1.21); 

see Eq. (3.25); 

see Eqs. (3.48) and (3.49); 

see Eq. (3.196). 

Subscripts 

e - parameters at outer edge of boundary layer; 
w - parameters at wall; 
s - parameters at critical point; 
0 0 - parameters at infinity in approaching stream; 
0 - parameters in incompressible fluid, or parameters in absence 

of blowing; 
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r - parameters in absence of heat transfer between gas and wall; 
L - parameters at edge of laminar sublayer; 
T - parameters in turbulent core;- parameters at point of transition of laminar to turbulent motion, 

Superscripts 

(e) - equilibriumflow; 
V) - frozen flow; 

(ne) - nonequilibrium flow;-	overscore: in Chapter I, statistical averaging with respect to 
velocity; Eq. (1.2);in Chapter II, averaging with respect to 
time, Eq. (2.2); in Chapters III - V, dimensionless quantities. 
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